留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光滑区域上二维无黏性无热传导Boussinesq方程组与三维轴对称不可压Euler方程组的指数增长全局光滑解

孟德嘉 邓大文

孟德嘉, 邓大文. 光滑区域上二维无黏性无热传导Boussinesq方程组与三维轴对称不可压Euler方程组的指数增长全局光滑解[J]. 应用数学和力学, 2019, 40(8): 910-916. doi: 10.21656/1000-0887.390245
引用本文: 孟德嘉, 邓大文. 光滑区域上二维无黏性无热传导Boussinesq方程组与三维轴对称不可压Euler方程组的指数增长全局光滑解[J]. 应用数学和力学, 2019, 40(8): 910-916. doi: 10.21656/1000-0887.390245
MENG Dejia, DENG Dawen. Global Smooth Solutions With Exponential Growth to 2D Inviscid Boussinesq Equations Without Heat Conduction and 3D Axisymmetric Incompressible Euler Equations on Smooth Domains[J]. Applied Mathematics and Mechanics, 2019, 40(8): 910-916. doi: 10.21656/1000-0887.390245
Citation: MENG Dejia, DENG Dawen. Global Smooth Solutions With Exponential Growth to 2D Inviscid Boussinesq Equations Without Heat Conduction and 3D Axisymmetric Incompressible Euler Equations on Smooth Domains[J]. Applied Mathematics and Mechanics, 2019, 40(8): 910-916. doi: 10.21656/1000-0887.390245

光滑区域上二维无黏性无热传导Boussinesq方程组与三维轴对称不可压Euler方程组的指数增长全局光滑解

doi: 10.21656/1000-0887.390245
详细信息
    作者简介:

    孟德嘉(1993—),女,硕士(通讯作者. E-mail: Jerry_Mengdj@163.com);邓大文(1961—),男,教授,博士,硕士生导师.

  • 中图分类号: O175

Global Smooth Solutions With Exponential Growth to 2D Inviscid Boussinesq Equations Without Heat Conduction and 3D Axisymmetric Incompressible Euler Equations on Smooth Domains

  • 摘要: 研究二维无黏性无热传导Boussinesq方程组和三维轴对称不可压Euler方程组光滑解的增长情况,找各种区域使其上的方程组有快增长的解。对Boussinesq方程组,通过选取初始温度和速度的一个分量,可以把方程去耦为两部分。从关于涡量的部分求出涡量、速度场和使结论成立的区域,从关于温度的部分,可见温度的高阶导的增长仅依赖于速度场的一个分量。通过适当选取该分量,得到温度高阶导有指数增长的全局光滑解。对轴对称Euler方程组做类似的处理,适当选取速度场的径向分量,可把方程组去耦,最终得到一类光滑区域,在其上方程组有指数增长全局光滑解。该研究把Chae、Constantin、Wu对一个二维锥形区域上无黏性无热传导Boussinesq方程的结果,推广到一类光滑区域上, 并把他们的方法应用到三维轴对称不可压Euler方程组, 得到了类似的结果。
  • [1] TEMAM R, MIRANVILLE A. Mathematical Modeling in Continuum Mechanics [M]. Cambridge: Cambridge University Press, 2001.
    [2] MAJDA A. Introduction to PDEs and Waves for the Atmosphere and Ocean [M]. Providence: American Mathemaical Society, 2003.
    [3] PEDLOSKY J. Geophysical Fluid Dynamics [M]. 2nd ed. New York: Springer-Verlag, 2013.
    [4] MAJDA A J, BERTOZZI A L. Vorticity and Incompressible Flow [M]. Cambridge: Cambridge University Press, 2002.
    [5] YUDOVICH V I. Eleven great problems of mathematical hydrodynamic[J]. Moscow Mathematical Journal,2003,3(2): 711-737.
    [6] KISELEV A, TAN C. Finite time blow up in the hyperbolic Boussinesq system[J]. Advances in Mathematics,2018, 325: 34-55.
    [7] BEALE J T, KATO T, MAJDA A. Remarks on the breakdown of smooth solutions for the 3-D Euler equations[J]. Communications in Mathematical Physics,1984,94(1): 61-66.
    [8] KATO T. On classical solutions of the two-dimensional nonstationary Euler equation[J]. Archive for Rational Mechanics and Analysis,1967,25(3): 188-200.
    [9] MARCHIORO C, PULVIRENTI M. Mathematical Theory of Incompressible Nonviscous Fluids [M]. New York: Springer-Verlag, 1994.
    [10] YUDOVICH V I. The flow of a perfect, incompressible liquid through a given region[J]. Soviet Physics Doklady,1963,7: 789-791.
    [11] KISELEV A, SVERAK V. Small scale creation for solutions of the incompressible two-dimensional Euler equation[J]. Annals of Mathematics,2014,180(3): 1205-1220.
    [12] ZLATOS A. Exponential growth of the vorticity gradient for the Euler equation on the torus[J]. Advances in Mathematics,2015,268: 396-403.
    [13] KISELEV A, ZLATOS A. Blow up for the 2D Euler equation on some bounded domains[J]. Journal of Differential Equations,2015,259(7): 3490-3494.
    [14] CHAE D, CONSTANTIN P, WU J. An incompressible 2D didactic model with singularity and explicit solutions of the 2D Boussinesq equations[J]. Journal of Mathematical Fluid Mechanics,2014,16(3): 473-480.
  • 加载中
计量
  • 文章访问数:  931
  • HTML全文浏览量:  167
  • PDF下载量:  380
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-17
  • 修回日期:  2019-05-30
  • 刊出日期:  2019-08-01

目录

    /

    返回文章
    返回