[1] |
FENG K. Difference schemes for Hamiltonian formalism and symplectic geometry[J]. Journal of Computational Mathematics,1986,4(3): 279-289.
|
[2] |
GRTZ P. Backward error analysis of symplectic integrators for linear separable Hamiltonian systems[J]. Journal of Computational Mathematics,2002,20(5): 449-460.
|
[3] |
邢誉峰, 杨蓉. 单步辛算法的相位误差分析及修正[J]. 力学学报, 2007,39(5): 668-671.(XING Yufeng, YANG Rong. Phase errors and their correction in symplectic implicit single-step algorithm[J]. Chinese Journal of Theoretical and Applied Mechanics,2007,39(5): 668-671.(in Chinese))
|
[4] |
MONOVASILIS T, KALOGIRATOU Z, SIMOS T E. Symplectic partitioned Runge-Kutta methods with minimal phase-lag[J]. Computer Physics Communications,2010,181(7): 1251-1254.
|
[5] |
SIMOS T E. A two-step method with vanished phase-lag and its first two derivatives for the numerical solution of the Schrdinger equation[J]. Journal of Mathematical Chemistry,2011,49(10): 2486-2518.
|
[6] |
MONOVASILIS T, KALOGIRATOU Z, SIMOS T E. Two new phase-fitted symplectic partitioned Runge-Kutta methods[J]. International Journal of Modern Physics C,2011,22(12): 1343-1355.
|
[7] |
陈璐, 王雨顺. 保结构算法的相位误差分析及其修正[J]. 计算数学, 2014,36(3): 271-290.(CHEN Lu, WANG Yushun. Phase error analysis and correction of structure preserving algorithms[J]. Mathematica Numerica Sinica,2014,36(3): 271-290.(in Chinese))
|
[8] |
VYVER H V D. A symplectic Runge-Kutta-Nystrom method with minimal phase-lag[J]. Physics Letters A,2007,367(1/2): 16-24.
|
[9] |
MONOVASILIS Th, KALOGIRATOU Z, SIMOS T E. Exponentially fitted symplectic Runge-Kutta-Nystrm methods[J]. Applied Mathematics & Information Sciences,2013,7(1): 81-85.
|
[10] |
刘晓梅, 周钢, 王永泓, 等. 辛算法的纠飘研究[J]. 北京航空航天大学学报, 2013,39(1): 22-26.(LIU Xiaomei, ZHOU Gang, WANG Yonghong, et al. Rectifying drifts of symplectic algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2013,39(1): 22-26.(in Chinese))
|
[11] |
MONOVASILIS Th. Symplectic partitioned Runge-Kutta methods with the phase-lag property[J]. Applied Mathematics and Computation,2012,218(18): 9075-9084.
|
[12] |
XI X P, SIMOS T E. A new high algebraic order four stages symmetric two-step method with vanished phase-lag and its first and second derivatives for the numerical solution of the Schrdinger equation and related problems[J]. Journal of Mathematical Chemistry,2016,54(7): 1417-1439.
|
[13] |
朱帅, 周钢, 刘晓梅, 等. 精细辛有限元方法及其相位误差研究[J]. 力学学报, 2016,48(2): 399-405.(ZHU Shuai, ZHOU Gang, LIU Xiaomei, et al. Precise symplectic time finite element method and the study of phase error[J]. Chinese Journal of Theoretical and Applied Mechanics,2016,48(2): 399-405.(in Chinese))
|
[14] |
钟万勰. 结构动力方程的精细时程积分法[J]. 大连理工大学学报, 1994,37(2): 131-136.(ZHONG Wanxie. On precise time-integration method for structural dynamics[J]. Journal of Dalian University of Technology,1994,37(2): 131-136.(in Chinese))
|
[15] |
钟万勰, 吴峰, 孙雁, 等. 保辛水波动力学[J]. 应用数学和力学, 2018,39(8): 855-874.(ZHONG Wanxie, WU Feng, SUN Yan, et al. Symplectic water wave dynamics[J]. Applied Mathematics and Mechanics,2018,39(8): 855-874.(in Chinese))
|
[16] |
富明慧, 李勇息. 求解病态线性方程组的预处理精细积分法[J]. 应用数学和力学, 2018,39(4): 462-469.(FU Minghui, LI Yongxi. A preconditioned precise integration method for solving ill-conditioned linear equations[J]. Applied Mathematics and Mechanics,2018,39(4): 462-469.(in Chinese))
|
[17] |
HUANG Y A, DENG Z C, YAO L X. An improved symplectic precise integration method for analysis of the rotating rigid-flexible coupled system[J]. Journal of Sound and Vibration,2007,299(1/2): 229-246.
|
[18] |
曾进, 周钢. 精细辛算法[J]. 上海交通大学学报, 1997,31(9): 31-33.(ZENG Jin, ZHOU Gang. Precise symplectic algorithm[J]. Journal of Shanghai Jiaotong University,1997,31(9): 31-33.(in Chinese))
|
[19] |
黄永安, 尹周平, 邓子辰, 等. 多体动力学的几何积分方法研究进展[J]. 力学进展, 2009,39(1): 44-57.(HUANG Yongan, YIN Zhouping, DENG Zicheng, et al. Progress in geometric integration method for multibody dynamics[J]. Advances in Mechanics,2009,39(1): 44-57.(in Chinese))
|
[20] |
徐明毅, 张勇传. 精细辛算法的高效格式和简化计算[J]. 力学与实践, 2005,27(1): 55-57.(XU Mingyi, ZHANG Yongchuan. Efficient format and simple computation of precise symplectic integration method[J]. Mechanics in Engineering, 2005,27(1): 55-57.(in Chinese))
|
[21] |
BRUSA L, NIGRO L. A one-step method for direct integration of structural dynamic equations[J]. International Journal for Numerical Methods in Engineering,1980,15(5): 685-699.
|
[22] |
DAVID C, ERNST H, LUBICH C. Numerical energy conservation for multi-frequency oscillatory differential equations[J]. BIT Numerical Mathematics,2005,45(2): 287-305.
|