留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Euler-Bernoulli梁的高阶二次摄动解及收敛性讨论

张大光

张大光. Euler-Bernoulli梁的高阶二次摄动解及收敛性讨论[J]. 应用数学和力学, 2019, 40(6): 620-629. doi: 10.21656/1000-0887.390272
引用本文: 张大光. Euler-Bernoulli梁的高阶二次摄动解及收敛性讨论[J]. 应用数学和力学, 2019, 40(6): 620-629. doi: 10.21656/1000-0887.390272
ZHANG Daguang. High-Order Analytical Solutions and Convergence Discussions of the 2-Step Perturbation Method for Euler-Bernoulli Beams[J]. Applied Mathematics and Mechanics, 2019, 40(6): 620-629. doi: 10.21656/1000-0887.390272
Citation: ZHANG Daguang. High-Order Analytical Solutions and Convergence Discussions of the 2-Step Perturbation Method for Euler-Bernoulli Beams[J]. Applied Mathematics and Mechanics, 2019, 40(6): 620-629. doi: 10.21656/1000-0887.390272

Euler-Bernoulli梁的高阶二次摄动解及收敛性讨论

doi: 10.21656/1000-0887.390272
基金项目: 江西省教育厅科学技术研究项目(一般项目)(GJJ180458)
详细信息
    作者简介:

    张大光(1981—),男,讲师,博士(E-mail: zhangdaguang2012@gmail.com).

  • 中图分类号: O347;O175

High-Order Analytical Solutions and Convergence Discussions of the 2-Step Perturbation Method for Euler-Bernoulli Beams

  • 摘要: 首次用解析的方式给出了Euler-Bernoulli梁后屈曲与非线性弯曲问题的高阶二次摄动解答.假定梁的中线不可伸长,用精确曲率公式与能量变分原理导出了非线性Euler-Bernoulli梁的模型.通过与精确解或高阶摄动解的比较,讨论了二次摄动解答的收敛性及适用域.得到主要结论如下:低阶摄动解适用于描述梁的初始后屈曲阶段及初始非线性弯曲阶段;更高阶次的摄动解适用于描述梁的深度后屈曲以及深度非线性弯曲.从这个意义上去说,该文不仅仅指出某些文献上的部分结果不精确是由于摄动解答超出了其特定的适用域,并且还进一步发展与完善了二次摄动法.
  • [1] CHIEN W Z. Large deflection of a circular clamped plate under uniform pressure[J]. Acta Physica Sinica,1947,7(2): 102-107.
    [2] HE J H. Homotopy perturbation method for bifurcation of nonlinear problems[J]. International Journal of Nonlinear Sciences and Numerical Simulation,2005,6(2): 207-208.
    [3] WEIGEND F, AHLRICHS R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy[J]. Physical Chemistry Chemical Physics,2005,7(18): 3297-3305.
    [4] JOHNSON S G, IBANESCU M, SKOROBOGATIY M A, et al. Perturbation theory for Maxwell’s equations with shifting material boundaries[J]. Physical Review E,2002,65(6): 066611.
    [5] VILLEGAS-MARTINEZ B M, SOTO-EGUIBAR F, MOYA-CESSA H M. Application of perturbation theory to a master equation[J]. Advances in Mathematical Physics,2016(1): 9265039.
    [6] SOKOLOV A Y, CHAN G K-L. A time-dependent formulation of multi-reference perturbation theory[J]. Journal of Chemical Physics,2016,144: 064102.
    [7] 莫嘉琪, 林万涛, 杜增吉. 具双参数非线性高阶椭圆型方程的奇摄动解[J]. 系统科学与数学, 2013,33(2): 217-221.(MO Jiaqi, LIN Wantao, DU Zengji. A singularly perturbed solution for nonlinear higher order elliptic equations with two parameters[J]. Journal of Systems Science and Mathematical Sciences,2013,33(2): 217-221.(in Chinese))
    [8] 包立平, 洪文珍. 一维弱噪声随机Burgers方程的奇摄动解[J]. 应用数学和力学, 2018,39(1): 113-122.(BAO Liping, HONG Wenzhen. Singular perturbation solutions to 1D stochastic Burgers equations under weak noises[J]. Applied Mathematics and Mechanics,2018,39(1): 113-122.(in Chinese))
    [9] 长龙, 刘全生, 菅永军, 等. 具有正弦粗糙度的环形微管道中脉冲流动[J]. 应用数学和力学, 2016,37(10): 1118-1128.(CHANG Long, LIU Quansheng, JIAN Yongjun, et al. Oscillating flow in annular microchannels with sinusoidally corrugated walls[J]. Applied Mathematics and Mechanics,2016,37(10): 1118-1128.(in Chinese))
    [10] 宋涛, 李家春. 表面张力作用下深水波的高阶摄动解[J]. 力学学报, 1989,21(2): 145-153.(SONG Tao, LI Jiachun. Perturbation solution of high order for deep gravity-capillary water wave[J]. Chinese Journal of Theoretical and Applied Mechanics,1989,21(2): 145-153.(in Chinese))
    [11] 陈山林. 圆板大挠度的钱伟长解及其渐近特性[J]. 应用数学和力学, 1982,3(4): 513-518.(CHEN Shanlin. Chien’s solution and its asymptotic behavior in large deflection of circular plates[J]. Applied Mathematics and Mechanics,1982,3(4): 513-518.(in Chinese))
    [12] 叶开沅, 周又和. 关于钱氏摄动法的高阶解的计算机求解和收敛性的研究[J]. 应用数学和力学, 1986,7(4): 285-293.(YEH Kaiyuan, ZHOU Youhe. On solving high-order solutions of Chien’s perturbation method to study convergence by computer[J]. Applied Mathematics and Mechanics,1986,7(4): 285-293.(in Chinese))
    [13] 沈惠申, 张建武. 单向压缩简支矩形板后屈曲摄动分析[J]. 应用数学和力学, 1988,9(8): 741-752.(SHEN Huishen, ZHANG Jianwu. Perturbation analyses for the postbuckling of simply supported rectangular plates under uniaxial compression[J]. Applied Mathematics and Mechanics,1988,9(8): 741-752.(in Chinese))
    [14] BLZQUEZ A, PICN R. Analytical and numerical models of postbuckling of orthotropic symmetric plates[J].Journal of Engineering Mechanics,2010,136(10): 1299-1308.
    [15] SHEN H S. Postbuckling analysis of stiffened laminated cylindrical shells under combined external liquid pressure and axial compression[J]. Engineering Structures,1998,20(8): 738-751.
    [16] SHEN H S. Nonlinear bending of Reissner-Mindlin plates with free edges under transverse and in-plane loads and resting on elastic foundations[J]. International Journal of Mechanical Sciences,1999,41(7): 845-864.
    [17] SHEN H S. Large deflection of composite laminated plates under transverse and in-plane loads and resting on elastic foundations[J]. Composite Structures,1999,45(2): 115-123.
    [18] SHEN H S. Thermal postbuckling behavior of imperfect shear deformable laminated plates with temperature-dependent properties[J]. Computer Methods in Applied Mechanics and Engineering,2001,190: 5377-5390.
    [19] YANG J, SHEN H S. Vibration characteristics and transient response of shear-deformable functionally graded plates in thermal environments[J]. Journal of Sound and Vibration,2002,255(3): 579-602.
    [20] SHEN H S. A novel technique for nonlinear analysis of beams on two-parameter elastic foundations[J]. International Journal of Structural Stability and Dynamics,2011,11(6): 999-1014.
    [21] SHEN H S. Nonlinear analysis of lipid tubules by nonlocal beam model[J]. Journal of Theoretical Biology,2011,276(1): 50-56.
    [22] SHEN H S, ZHANG C L. Nonlocal beam model for nonlinear analysis of carbon nanotubes on elastomeric substrates[J]. Computational Materials Science,2011,50(3): 1022-1029.
    [23] 诺沃日洛夫 B B. 非线性弹性力学基础[M]. 朱兆祥, 译. 北京: 科学出版社, 1958.(NOVOZHILOV B B. Foundations of the Nonlinear Theory of Elasticity [M]. ZHU Zhaoxiang, transl. Beijing: Science Press, 1958.(Chinese version))
    [24] 武际可, 苏先樾. 弹性系统的稳定性[M]. 北京: 科学出版社, 1994: 107-108.(WU Jike, SU Xianyue. Stability of Elastic Systems [M]. Beijing: Science Press, 1994: 107-108.(in Chinese))
  • 加载中
计量
  • 文章访问数:  1505
  • HTML全文浏览量:  217
  • PDF下载量:  489
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-22
  • 修回日期:  2018-11-14
  • 刊出日期:  2019-06-01

目录

    /

    返回文章
    返回