留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

完整Coriolis力作用下的非线性近惯性波

杜春瑶 杨联贵 张永利 张瑞岗

杜春瑶, 杨联贵, 张永利, 张瑞岗. 完整Coriolis力作用下的非线性近惯性波[J]. 应用数学和力学, 2019, 40(9): 1000-1010. doi: 10.21656/1000-0887.390280
引用本文: 杜春瑶, 杨联贵, 张永利, 张瑞岗. 完整Coriolis力作用下的非线性近惯性波[J]. 应用数学和力学, 2019, 40(9): 1000-1010. doi: 10.21656/1000-0887.390280
DU Chunyao, YANG Liangui, ZHANG Yongli, ZHANG Ruigang. Nonlinear Near Inertial Waves With Complete Coriolis Effects[J]. Applied Mathematics and Mechanics, 2019, 40(9): 1000-1010. doi: 10.21656/1000-0887.390280
Citation: DU Chunyao, YANG Liangui, ZHANG Yongli, ZHANG Ruigang. Nonlinear Near Inertial Waves With Complete Coriolis Effects[J]. Applied Mathematics and Mechanics, 2019, 40(9): 1000-1010. doi: 10.21656/1000-0887.390280

完整Coriolis力作用下的非线性近惯性波

doi: 10.21656/1000-0887.390280
基金项目: 国家自然科学基金(11762011)
详细信息
    作者简介:

    杜春瑶(1990—),女,硕士(E-mail: 1260815941@qq.com);张瑞岗(1988—),男,讲师,博士(通讯作者. E-mail: rgzhang@imu.edu.cn).

  • 中图分类号: O175

Nonlinear Near Inertial Waves With Complete Coriolis Effects

Funds: The National Natural Science Foundation of China(11762011)
  • 摘要: 从包含有完整Coriolis力作用下的大气运动原始基本方程组出发,通过尺度分析,采用多重尺度法及摄动展开法,推导了中高纬大气非线性近惯性波振幅演化所满足的Korteweg-de Vries方程.从演化方程的结果可以看出Coriolis参数水平分量对非线性近惯性波的影响,主要体现为对频散效应的修正及与基本流的相互作用.从理论上解释了完整Coriolis力作用下的中高纬地区大气非线性近惯性波运动的物理机制.
  • [1] ECKART C. Chapter Ⅳ: the field equations[J]. Hydrodynamics of Oceans and Atmospheres,1960,14(8): 52-63.
    [2] PHILLIPS N A. The equations of motion for a shallow rotating atmosphere and the traditional approximation[J]. Journal of the Atmospheric Sciences,2010,27(5): 504-505.
    [3] WHITE A A, BROMLEY R A. Dynamically consistent, quasi-hydrostatic equations for global models with a complete representation of the Coriolis force[J]. Quarterly Journal of the Royal Meteorological Society,2010,121(522): 399-418.
    [4] GERKEMA T, ZIMMERMAN J, MAAS L. Geophysical and astrophysical fluid dynamics beyond the traditional approximation[J]. Reviews of Geophysics,1977,46(2): 1-33.
    [5] ROBERT R L. Solitary waves in the one- and two-fluid systems[J]. Tellus,1956,8(4): 460-471.
    [6] REDEKOPP L G. On the theory of solitary Rossby waves[J]. Journal of Fluid Mechanics,1977,82: 725-745.
    [7] WADATI M. The modified Korteweg-deVries equation[J]. Journal of the Physical Society of Japan,1973,34(5): 1289-1296.
    [8] CHARNEY J G, STRAUS D M. Form-drag instability, multiple equilibria and propagating planetary waves in baroclinic, orographically forced, planetary wave systems[J]. Journal of the Atmospheric Sciences ,1980,6: 1205-1216.
    [9] BODY J P. Equatorial solitary waves, part Ⅰ: Rossby solitons[J]. Journal of Physical Oceanography,1980,10: 1699-1718.
    [10] BOYD J P. Equatorial solitary waves, part 2: envelope solitons[J]. Journal of Physical Oceanography,2010,13(3): 428-449.
    [11] LUO D H, JI L R. A theory of blocking formation in the atmosphere[J]. Science in China (Series B),1989,33(3): 323-333.
    [12] LIU S K, TAN B K. Solitary Rossby waves with the beta parameter[J]. J Applied Mathematic and Mechanics,1992,1: 35-43.
    [13] SONG J, YANG L G. Force solitary Rossby waves with beta effect and topography effect in stratified flows[J]. Acta Physica Sinica,2010,59(12): 221-226.
    [14] SONG J, YANG L G, LIU Q S. Solitary Rossby waves with beta effect and topography effect in a barotropic atmospheric model[J]. Progress in Geophysics,2012,27(2): 393-397.
    [15] SONG J, LIU Q S, YANG L G. Algebraic solitary Rossby wave excited slowly changing topography and beta effect[J]. Progress in Geophysics,2013,28(4): 1684-1688.
    [16] KASAHARA A J. Use of precipitation data for diabatic initialization to improve the tropical analysis of divergence and moisture[J]. Meteorology and Atmospheric Physics,1996,60(1/3): 143-156.
    [17] PHILLIPS N A. The equations of motion for a shallow rotating atmosphere and the traditional approximation[J]. Journal of the Atmospheric Sciences,1966,23(5): 626-628.
    [18] GERKEMA T, SHRIRA V I. Near-inertial waves in the ocean: beyond the ‘traditional approximation’[J]. Journal of Fluid Mechanics,2005,529: 195-219.
    [19] DELLAR P J, SALMON R. Shallow water equations with a complete Coriolis force and topography[J]. Physics of Fluids,2005,17(10): 1-100.
    [20] LONG R R. Solitary waves in the westerlies[J]. Journal of the Atmospheric Sciences,1964,〖STHZ〗 3: 197-200.
    [21] 罗德海. 大气中非线性Rossby波包的传播[J]. 成都气象学院学报, 1991(2): 1-6.(LUO Dehai. Propagation of nonlinear Rossby wave packet in atmosphere[J]. Journal of Chengdu Institute of Information Engineering,1991(2): 1-6.(in Chinese))
    [22] 张永利, 杨联贵. 正压大气模式中在地形效应和beta效应作用下的非线性Rossby包络孤立波[J]. 地球物理学进展, 2016,31(6): 1381-1386.(ZHANG Yongli, YANG Liangui. Nonlinear Rossby envelope solitary waves with topographic effect and β effect in the barotropic atmospheric model[J]. Progress in Geophysics,2016,31(6): 1381-1386.(in Chinese))
    [23] 张永利, 杨联贵, 宋健. 地形效应下正压模式方程组的能量守恒[J]. 内蒙古大学学报(自然科学版), 2016,47(2): 140-144.(ZHANG Yongli, YANG Liangui, SONG Jian. Conservation of energy for positive pressure model system under topographic effect[J]. Journal of Inner Mongolia University (Natural Science Edition),2016,47(2): 140-144.(in Chinese))
    [24] 张永利, 杨联贵. 地形效应下正压准地转模式的能量守恒[J]. 应用数学和力学, 2016,37(9): 936-944.(ZHANG Yongli, YANG Liangui. Conservation of energy in the barotropic quasi-geostrophic model under orographic effects[J]. Applied Mathematics and Mechanics,2016,37(9): 936-944.(in Chinese))
    [25] 张颖娴. 北半球温带气旋的气候学及其变率研究[D]. 博士学位论文. 南京: 南京信息工程大学, 2012.(ZHANG Yingxian. A climatology and variation research of extratropical cyclones in the North Hemisphere[D]. PhD Thesis. Nanjing: Nanjing University of Information Science & Technology.(in Chinese))
    [26] 郝世峰, 楼茂园, 杨诗芳, 等. 干斜压大气拉格朗日原始方程组的半解析解法和非线性密度流数值试验[J]. 物理学报, 2015,〖STHZ〗 64(19): 194702.(HAO Shifeng, LOU Maoyuan, YANG Shifang, et al. Semi-analytical solution of the dry baroclinic atmosphere primitive equations and nonlinear experiment of a non-liner density currente[J]. Acta Physica Sinica,2015,64(19): 194702.(in Chinese))
    [27] 滕代高, 罗哲贤, 李春虎, 等. 斜压大气中台风涡旋自组织的研究[J]. 气象学报, 2008,66(1): 71-80.(TENG Daigao, LUO Zhexian, LI Chunhu, et al. Typhoon vortices self-organization in a baroclinic environment[J]. Acta Meteorologica Sinica,2008,66(1): 71-80.(in Chinese))
  • 加载中
计量
  • 文章访问数:  1330
  • HTML全文浏览量:  177
  • PDF下载量:  387
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-24
  • 修回日期:  2019-06-28
  • 刊出日期:  2019-09-01

目录

    /

    返回文章
    返回