[1] |
LUC D T. Theory of Vector Optimization [M]. Berlin: Springer-Verlag, 1989.
|
[2] |
BOT R I, GRAD S M, WANKA G. Duality in Vector Optimization [M]. Berlin: Springer-Verlag, 2009.
|
[3] |
彭再云, 李科科, 张石生. D-η-E- 半预不变凸映射与向量优化[J]. 应用数学和力学, 2014,35(9): 1020-1032.(PENG Zaiyun, LI Keke, ZHANG Shisheng. D-η-E -semipreinvex vector mappings and vector optimization[J]. Applied Mathematics and Mechanics,2014,35(9): 1020-1032.(in Chinese))
|
[4] |
赵勇, 彭再云, 张石生. 向量优化问题有效点集的稳定性[J]. 应用数学和力学, 2013,34(6): 643-650.(ZHAO Yong, PENG Zaiyun, ZHANG Shisheng. Stability of the sets of effective points of vector valued optimization problems[J]. Applied Mathematics and Mechanics,2013,〖STHZ〗 34(6): 643-650.(in Chinese))
|
[5] |
陈望, 周志昂. 基于改进集的带约束集值向量均衡问题的最优性条件[J]. 应用数学和力学, 2018,39(10): 1189-1197.(CHEN Wang, ZHOU Zhiang. Optimality conditions for set-valued vector equilibrium problems with constraints involving improvement sets[J]. Applied Mathematics and Mechanics,2018,39(10): 1189-1197.(in Chinese))
|
[6] |
BEN-TAL A, GHAOUI L E, NEMIROVSKI A. Robust Optimization [M]. Princeton: Princeton University Press, 2009.
|
[7] |
LEE G M, LEE J H. On nonsmooth optimality theorems for robust multiobjective optimization problems[J]. Journal of Nonlinear and Convex Analysis,2015,16(10): 2039-2052.
|
[8] |
EHRGOTT M, IDE J, SCHBEL A. Minmax robustness for multi-objective optimization problems[J]. European Journal of Operational Research,2014,239(1): 17-31.
|
[9] |
SUN X K, PENG Z Y, GUO X L. Some characterizations of robust optimal solutions for uncertain convex optimization problems[J]. Optimization Letters,2016,10(7): 1463-1478.
|
[10] |
FAKHAR M, MAHYARINIA M R, ZAFARANI J. On nonsmooth robust multiobjective optimization under generalized convexity with applications to portfolio optimization[J]. European Journal of Operational Research,2018,265(1): 39-48.
|
[11] |
LORIDAN P. ε-solutions in vector minimization problems[J]. Journal of Optimization Theory and Application,1984,43(2): 265-276.
|
[12] |
SON T Q, STRODIOT J J, NGUYEN V H. ε-optimality and ε-Lagrangian duality for a nonconvex programming problem with an infinite number of constraints[J]. Journal of Optimization Theory and Application,2009,141(2): 389-409.
|
[13] |
SON T Q, KIM D S. ε-mixed type duality for nonconvex multiobjective programs with an infinite number of constraints[J]. Journal of Global Optimization,2013,57(2): 447-465.
|
[14] |
SUN X K, LI X B, LONG X J, et al. On robust approximate optimal solutions for uncertain convex optimization and applications to multi-objective optimization[J]. Pacific Journal of Optimization,2017,13(4): 621-643.
|
[15] |
CLARKE F H. Optimization and Nonsmooth Analysis [M]. New York: John Wiley & Sons, 1983.
|
[16] |
MIFFLIN R. Semismooth and semiconvex functions in constrained optimization[J]. SIAM Journal on Control and Optimization,1977,15(6): 959-972.
|