留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类欠驱动MIMO系统集中式自抗扰控制

肖友刚 朱铖臻 卢浩 韩锟

肖友刚, 朱铖臻, 卢浩, 韩锟. 一类欠驱动MIMO系统集中式自抗扰控制[J]. 应用数学和力学, 2020, 41(11): 1197-1209. doi: 10.21656/1000-0887.390356
引用本文: 肖友刚, 朱铖臻, 卢浩, 韩锟. 一类欠驱动MIMO系统集中式自抗扰控制[J]. 应用数学和力学, 2020, 41(11): 1197-1209. doi: 10.21656/1000-0887.390356
XIAO Yougang, ZHU Chengzhen, LU Hao, HAN Kun. CADRC for a Class of Underactuated MIMO Systems[J]. Applied Mathematics and Mechanics, 2020, 41(11): 1197-1209. doi: 10.21656/1000-0887.390356
Citation: XIAO Yougang, ZHU Chengzhen, LU Hao, HAN Kun. CADRC for a Class of Underactuated MIMO Systems[J]. Applied Mathematics and Mechanics, 2020, 41(11): 1197-1209. doi: 10.21656/1000-0887.390356

一类欠驱动MIMO系统集中式自抗扰控制

doi: 10.21656/1000-0887.390356
基金项目: 湖南省科技计划项目(2013GK3004)
详细信息
    作者简介:

    肖友刚(1970—),教授,博士,博士生导师(通讯作者. E-mail: csuxyg@163.com).

  • 中图分类号: TP273

CADRC for a Class of Underactuated MIMO Systems

  • 摘要: 应用广泛的欠驱动多输入多输出系统的控制仍是开放性的难题.将欠驱动系统分为直接驱动部分和间接驱动部分,根据直接驱动部分的当前状态和目标状态,设计直接驱动部分的虚拟控制律;利用统一的扩张状态观测器对间接驱动部分的内扰和外扰进行统一估计,设计虚拟控制律对总和扰动进行补偿,并将直接和间接驱动部分的虚拟控制律有机组合成综合控制律,实现了欠驱动系统的集中控制,并应用Lyapunov方法对算法的稳定性进行了严格的数学证明.整个控制系统结构紧凑、鲁棒性和抗干扰能力强、参数整定容易.
  • [1] ABDEL R E, NAYFEH A H, MASOUD Z N. Dynamics and control of cranes: a review[J]. Journal of Vibration and Control,2003,9(7): 863-908.
    [2] RAMLI L, MOHAMED Z, ABDULLAHI A M, et al. Control strategies for crane systems: a comprehensive review[J]. Mechanical Systems and Signal Processing,2017,95(10): 1-23.
    [3] MUKHTAR F H, HWA J Y, IMTIAZ A C, et al. Current development on using rotary inverted pendulum as a benchmark for testing linear and nonlinear control algorithms[J]. Mechanical Systems and Signal Processing,2019,116(1): 347-369.
    [4] BARA J E, HOMAYOUN N. A review of quadrotor: an underactuated mechanical system[J]. Annual Reviews in Control,2018,46: 165-180.
    [5] 郭晨, 汪洋, 孙富春. 欠驱动水面船舶运动控制研究综述欠驱动水面船舶运动控制研究综述[J]. 控制与决策, 2011,24(3): 321-329.(GUO Chen, WANG Yang, SUN Fuchun. Survey for motion control of underactuated surface vessels[J]. Control and Decision,2011,24(3): 321-329.(in Chinese))
    [6] 易中贵, 戈新生. 基于 Gauss 伪谱法的欠驱动航天器姿态优化控制[J]. 应用数学和力学, 2017,38(12): 1319-1330.(YI Zhonggui, GE Xinsheng. Optimal attitude control of underactuated spacecrafts with the Gauss pseudospectral method[J]. Applied Mathematics and Mechanics,2017,38(12): 1319-1330.(in Chinese))
    [7] 赵晨, 戈新生. 基于虚拟完整约束的欠驱动起重机控制方法[J]. 应用数学和力学, 2019,40(3): 302-310.(ZHAO Chen, GE Xinsheng. A control method for underactuated cranes based on virtual holonomic constraints[J]. Applied Mathematics and Mechanics,2019,40(3): 302-310.(in Chinese))
    [8] 陈彦杰. 欠驱动机器人系统的运动规划方法及应用研究[D]. 博士学位论文. 长沙: 湖南大学, 2017.(CHEN Yanjie. Research on motion planning methods for underactuated robotic systems and their applications[D]. PhD Thesis. Changsha: Hunan University, 2017.(in Chinese))
    [9] WU T S, KARKOUB M, YU W S, et al. Anti-sway tracking control of tower cranes with delayed uncertainty using a robust adaptive fuzzy control[J]. Fuzzy Sets and Systems,2016,290(5): 118-137.
    [10] CHENG K H. Adaptive B-spline-based fuzzy sliding-mode control for an auto-warehousing crane system[J]. Applied Soft Computing,2016,48(11): 476-490.
    [11] LEE L H, HUANG P H, SHIH Y C, et al. Parallel neural network combined with sliding mode control in overhead crane control system[J].Journal of Vibration and Control,2014,20(5): 749-760.
    [12] BENHELLAL B, HAMERLAIN M, OUIGUINI R, et al. Decoupled adaptive neuro-fuzzy sliding mode control applied in a 3D crane system[J]. Journal of Electrical Engineering,2014,14(1): 313-319.
    [13] QIAN Y Z, FANG Y C, LU B. Adaptive repetitive learning control for an offshore boom crane[J]. Automatica,2017,82(82): 21-28.
    [14] HAN J Q. From PID to active disturbance rejection control[J]. IEEE Transactions on Industrial Electronics,2009,56(3): 900-906.
    [15] 李荣辉. 欠驱动水面船舶航迹自抗扰控制研究[D]. 博士学位论文. 大连: 大连海事大学, 2013.(LI Ronghui. Active disturbance rejction based tracking control of underactuated surface ships[D]. PhD Thesis. Dalian: Dalian Maritime University, 2013.(in Chinese))
    [16] 王紫东. 基于欠驱动性的双足机器人高能效行走控制研究[D]. 博士学位论文. 杭州: 浙江大学, 2016.(WANG Zidong. Control strategy of biped robots based on underactuation[D]. PhD Thesis. Hangzhou: Zhejiang University, 2016.(in Chinese))
    [17] RAMIREZ N M, SIRA R H, GARRIDO M R, et al, Linear active disturbance rejection control of underactuated systems: the case of the Furuta pendulum[J]. ISA Transactions,2014,53(4): 920-928.
    [18] 韩京清. 自抗扰控制技术: 估计补偿不确定因素的控制技术[M]. 北京: 国防工业出版社, 2008.(HAN Jingqing. Active Disturbance Rejection Control Technique: the Technique for Estimating and Compensating the Uncertainties [M]. Beijing: National Defense Industry Press, 2008.(in Chinese))
    [19] GAO Z Q. Scaling and bandwidth-parameterization based controller tuning[C]// Proceedings of the American Control Conference . Denver, Colorado, USA, 2003.
    [20] 深圳市元创兴科技有限公司. 直线倒立摆实验指导书[M]. 深圳: 深圳市元创兴科技有限公司, 2008.(Shenzhen Yuan Chuang Hsing Technology Co Ltd. Experimental Guide for Straight Inverted Pendulum [M]. Shenzhen: Shenzhen Yuan Chuang Hsing Technology Co Ltd, 2008.(in Chinese))
  • 加载中
计量
  • 文章访问数:  858
  • HTML全文浏览量:  154
  • PDF下载量:  197
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-14
  • 修回日期:  2020-03-16
  • 刊出日期:  2020-11-01

目录

    /

    返回文章
    返回