[1] |
PODLUBNY I. Fractional Differential Equations: an Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications [M]. San Diego: Academic Press, 1999.
|
[2] |
张平奎, 杨绪君. 基于激励滑模控制的分数阶神经网络的修正投影同步研究[J]. 应用数学和力学, 2018,39(3): 343-354.(ZHANG Pingkui, YANG Xujun. Modified projective synchronization of a class of fractional-order neural networks based on active sliding mode control[J]. Applied Mathematics and Mechanics,2018,39(3): 343-354.(in Chinese))
|
[3] |
杨旭, 梁英杰, 孙洪广, 等. 空间分数阶非Newton流体本构及圆管流动规律研究[J]. 应用数学和力学, 2018,39(11): 1213-1226.(YANG Xu, LIANG Yingjie, SUN Hongguang, et al. A study on the constitutive relation and the flow of spatial fractional non-Newtonian fluid in circular pipes[J]. Applied Mathematics and Mechanics,2018,39(11): 1213-1226.(in Chinese))
|
[4] |
CAPUTO M. Elasticità e Dissipazione [M]. Bologna: Zanichelli, 1969.
|
[5] |
SINAI Y G. The limiting behavior of a one-dimensional random walk in a random medium[J]. Theory of Probability & Its Applications,1983,27(2): 256-268.
|
[6] |
CHECHKIN A V, KLAFTER J, SOKOLOV I M. Fractional Fokker-Planck equation for ultraslow kinetics[J]. Europhysics Letters,2003,63(3): 326-332.
|
[7] |
KOCHUBEI A N. Distributed order calculus and equations of ultraslow diffusion[J]. Journal of Mathematical Analysis and Applications,2008,340(1): 252-281.
|
[8] |
JIAO Z, CHEN Y,PODLUBNY I. Distributed-Order Dynamic Systems: Stability, Simulation, Applications and Perspectives [M]. London: Springer, 2012.
|
[9] |
CAPUTO M. Distributed order differential equations modelling dielectric induction and diffusion[J]. Fractional Calculus and Applied Analysis,2001,4(4): 421-442.
|
[10] |
HARTLEY T T, LORENZO C F. Fractional system identification: an approach using continuous order-distributions: NASA/TM-1999-209640[R]. USA: NASA, 1999.
|
[11] |
FORD N J, MORGADO M L, REBELO M. An implicit finite difference approximation for the solution of the diffusion equation with distributed order in time[J]. Electronic Transactions on Numerical Analysis,2015,44: 289-305.
|
[12] |
GAO G H, SUN Z Z. Two unconditionally stable and convergent difference schemes with the extrapolation method for the one-dimensional distributed-order differential equations[J]. Numerical Methods for Partial Differential Equations,2016,32(2): 591-615.
|
[13] |
GAO G H, SUN H W, SUN Z Z. Some high-order difference schemes for the distributed-order differential equations[J]. Journal of Computational Physics, 2015,298: 337-359.
|
[14] |
HU J H, WANG J G, NIE Y F. Numerical algorithms for multidimensional time-fractional wave equation of distributed-order with a nonlinear source term[J]. Advances in Difference Equations,2018(1): 352. DOI: 10.1186/s13662-018-1817-2.
|
[15] |
郭晓斌, 尚德泉. 复化两点Gauss-Legendre公式及其误差分析[J]. 数学教学研究, 2010,29(4): 49-51.(GUO Xiaobin, SHANG Dequan. Composite two-point Gauss-Legendre formula and the error analysis[J]. Research of Mathematic Teaching-Learning,2010,29(4): 49-51.(in Chinese))
|
[16] |
TIAN W, ZHOU H, DENG W. A class of second order difference approximations for solving space fractional diffusion equations[J]. Mathematics of Computation,2015,84(294): 1703-1727.
|
[17] |
SUN Z Z. The Method of Order Reduction and Its Application to the Numerical Solutions of Partial Differential Equations [M]. Beijing: Science Press, 2009.
|
[18] |
ZHU Y, SUN Z Z. A high-order difference scheme for the space and time fractional Bloch-Torrey equation[J].Computational Methods in Applied Mathematics,2018,18(1): 147-164.
|