[1] |
沈观林, 胡更开. 复合材料力学[M]. 北京: 清华大学出版社, 2006: 3-5.(SHEN Guanlin, HU Gengkai. Mechanics of Composites [M]. Beijing: Tsinghua University Press, 2006: 3-5.(in Chinese))
|
[2] |
葛仁余, 牛忠荣, 程长征, 等. 边界元法分析二维线弹性裂纹扩展[J]. 计算物理, 2015,32(3): 310-320.(GE Renyu, NIU Zhongrong, CHENG Changzheng, et al. Propagation analysis of two-dimensional linear elastic crack with boundary element method[J]. Chinese Journal of Computational Physics,2015,32(3): 310-320.(in Chinese))
|
[3] |
王振, 余天堂. 模拟三维裂纹问题的自适应多尺度扩展有限元法[J]. 工程力学, 2016,33(1): 32-38.(WANG Zhen, YU Tiantang. Adaptive multiscale extended finite element method for modeling three-dimensional crack problems[J].Engineering Mechanics,2016,33(1): 32-38.(in Chinese))
|
[4] |
秦洪远, 黄丹, 刘一鸣, 等. 基于改进型近场动力学方法的多裂纹扩展分析[J]. 工程力学, 2017,34(12): 31-38.(QIN Hongyuan, HUANG Dan, LIU Yiming, et al. An extended peridynamic approach for analysis of multiple crack growth[J]. Engineering Mechanics,2017,34(12): 31-38.(in Chinese))
|
[5] |
江守燕, 杜成斌, 顾冲时, 等. 求解双材料界面裂纹应力强度因子的扩展有限元法[J]. 工程力学, 2015,32(3): 22-27, 40.(JIANG Shouyan, DU Chengbin, GU Chongshi, et al. Computation of stress intensity factors for interface cracks between two dissimilar materials using extended finite element methods[J]. Engineering Mechanics,2015,32(3): 22-27, 40.(in Chinese))
|
[6] |
吕君, 柴国钟. 双材料裂纹问题的积分方程方法[J]. 浙江工业大学学报, 2017,45(2): 130-136, 158.(L Jun, CHAI Guozhong. Integral equation methods for the problem of bi-material crack[J]. Journal of Zhejiang University of Technology,2017,45(2): 130-136, 158.(in Chinese))
|
[7] |
牛忠荣, 葛仁余, RECHO N, 等. 平面V形切口塑性应力奇异性分析[J]. 中国科学: 物理学 力学 天文学, 2014,44(1): 79-90.(NIU Zhongrong, GE Renyu, RECHO N, et al. Evaluation of plastic stress singularities of plane V-notches and cracks in hardening materials[J]. Scientia Sinica: Physica, Mechanica & Astronomica,2014,44(1): 79-90.(in Chinese))
|
[8] |
WILLIAMS M L. Stress singularities resulting from various boundary conditions in angular corners of plates in extension[J]. Journal of Applied Mechanics,1952,19(1): 287-298.
|
[9] |
李有堂, 王勇. 功能梯度材料V型缺口根部裂纹场强特性分析[J]. 兰州理工大学学报, 2018,44(4): 162-166.(LI Youtang, WANG Yong. Characteristic analysis of crack stress field intensity at V-shaped notch root of functionally gradient materials[J]. Journal of Lanzhou University of Technology,2018,44(4): 162-166.(in Chinese))
|
[10] |
MIRSAYAR MM, ALIHA M R M, SAMAEI A T. On fracture initiation angle near bi-material notches-effects of first non-singular stress term[J]. Engineering Fracture Mechanics,2014,119: 124-131.
|
[11] |
李俊林, 张少琴, 杨维阳, 等. 正交异性双材料界面裂纹尖端应力场[J]. 应用数学和力学, 2008,29(8): 947-953.(LI Junlin, ZHANG Shaoqin, YANG Weiyang, et al. Study of stress fields near interface crack tip of double dissimilar orthotropic composite materials[J]. Applied Mathematics and Mechanics,2008,29(8): 947-953.(in Chinese))
|
[12] |
AYATOLLAHI M R, MIRSAYAR M M, NEJATI M. Evaluation of first non-singular stress term in bi-material notches[J]. Computational Materials Science,2010,50(2): 752-760.
|
[13] |
范海军, 肖盛燮. Ⅱ型平面应力裂纹线场弹塑性极坐标精确解[J]. 应用力学学报, 2015,32(4): 543-548, 701.(FAN Haijun, XIAO Shengxie. Elastic-plastic exact solution of polar coordinates on mode Ⅱ plane stress cracking in stress field[J]. Chinese Journal of Applied Mechanics,2015,32(4): 543-548, 701.(in Chinese))
|
[14] |
LAN X, NODA N A, MITHINAKA K, et al. The effect of material combinations and relative crack size to the stress intensity factors at the crack tip of a bi-material bonded strip[J]. Engineering Fracture Mechanics,2011,78(14): 2572-2584.
|
[15] |
牛忠荣, 程长征, 胡宗军, 等. V形切口应力强度因子的一种边界元分析方法[J]. 力学学报, 2008,40(6): 849-857.(NIU Zhongrong, CHENG Changzheng, HU Zongjun, et al. Boundary element analysis of the stress intensity factors for V-notched Structures[J]. Chinese Journal of Theoretical and applied Mechanics,2008,40(6): 849-857.(in Chinese))
|
[16] |
王有成. 工程中的边界元方法[M]. 北京: 中国水利水电出版社, 1996.(WANG Youcheng. Boundary Element Method in Engineering [M]. Beijing: China Water & Power Press, 1996.(in Chinese))
|
[17] |
高效伟, 郑保敬, 刘健. 功能梯度材料动态断裂力学的径向积分边界元法[J]. 力学学报, 2015,47(5): 868-873.(GAO Xiaowei, ZHENG Baojing, LIU Jian. Dynamic fracture analysis of functionally graded materials by radial integration BEM[J]. Chinese Journal of Theoretical and Applied Mechanics,2015,47(5): 868-873.(in Chinese))
|
[18] |
YUUKI R, CHAO S B. Efficient boundary element analysis of stress intensity factors for interface cracks in dissimilar materials[J]. Engineering Fracture Mechanics,1989,34(1): 179-188.
|
[19] |
李聪, 牛忠荣, 胡斌, 等. 扩展边界元法分析切口和裂纹结构应力场的准确性[J]. 固体力学学报, 2018,39(5): 539-551.(LI Cong, NIU Zhongrong, HU Bin, et al. Accuracy of the extended boundary element method analyzing the stress fields of V-notched/cracked structures[J]. Chinese Journal of Solid Mechanics,2018,39(5): 539-551.(in Chinese))
|
[20] |
张明, 姚振汉, 杜庆华. 双材料界面裂纹应力强度因子的边界元分析[J]. 应用力学学报, 1999,16(1): 21-26.(ZHANG Ming, YAO Zhenhan, DU Qinghua. Boundary element analysis of stress intensity factors of bimaterial interface crack[J]. Chinese Journal of Applied Mechanics,1999,16(1): 21-26.(in Chinese))
|