[1] |
KERMACK W O, MCKENDRICK A G. A contribution to the mathematical theory of epidemics[J]. Bulletin of Mathematical Biology,1991,53(1/2): 33-55.
|
[2] |
ANDERSON R M, MAY R M. Infectious Diseases of Human: Dynamics and Control [M]. Oxford: Oxford University Press, 1992.
|
[3] |
NEILAN R M, LENHART S. An introduction to optimal control with an application in disease modeling[J]. DIMACS Series in Discrete Mathematics,2010,159(40): 67-81.
|
[4] |
BISWAS M H A, PAIVA L T, DE PINHO M. A SEIR model for control of infectious diseases with constraints[J]. Mathematical Biosciences and Engineering,2014,11(4): 761-784.
|
[5] |
LEE S, CHOWELL G. Exploring optimal control strategies in seasonally varying flu-like epidemics[J]. Journal of Theoretical Biology,2017,412: 36-47.
|
[6] |
MATEUS J P, REBELO P, ROSA S, et al. Optimal control of non-autonomous SEIRS models with vaccination and treatment[J]. Discrete and Continuous Dynamical Systems,2018,6: 1179-1199.
|
[7] |
JACKSON T L, BYRNE H M. A mathematical model to study the effects of drug resistance and vasculature on the response of solid tumors to chemotherapy[J]. Mathematical Biosciences,2000,〖STHZ〗 164(1): 17-38.
|
[8] |
OKOSUN K O, MAKINDE O D. Modelling the impact of drug resistance in malaria transmission and its optimal control analysis[J]. International Journal of Physical Sciences,2011,〖STHZ〗 6(6): 6479-6487.
|
[9] |
孟新柱, 陈兰荪, 宋治涛. 一类新的含有垂直传染与脉冲免疫的时滞SEIR传染病模型的全局动力学行为[J]. 应用数学和力学,2007,28(9): 1123-1134.(MENG Xinzhu, CHEN Lansun, SONG Zhitao. Global dynamics behaviors for a new delay SEIR epidemic disease model with vertical transmission and pulse vaccination[J]. Applied Mathematics and Mechanics,2007,28(9): 1123-1134.(in Chinese))
|
[10] |
ELHIA M, RACHIK M, BENLAHMAR E. Optimal control of an SIR model with delay in state and control variables[J]. ISRN Biomathematics,2013. DOI: 10.1155/2013/403549.
|
[11] |
WANG X, PENG H, ZHANG S, et al. A symplectic local pseudospectral method for solving nonlinear state-delayed optimal control problems with inequality constraints[J]. International Journal of Robust and Nonlinear Control,2017,28(6): 2097-2120.
|
[12] |
BRYSON A E, HO Y C. Applied Optimal Control [M]. Wiley, 1975.
|
[13] |
FENG K, QIN M. Symplectic Geometric Algorithms for Hamiltonian Systems [M]. Berlin Heidelberg: Springer, 2010.
|
[14] |
钟万勰. 应用力学的辛数学方法[M]. 北京: 高等教育出版社, 2006.(ZHONG Wanxie. Symplectic Solution Methodology in Applied Mechanics [M]. Beijing: Higher Education Press, 2006.(in Chinese))
|