[1] |
〖JP2〗BABUSKA I, RHEINBOLDT W C. Error estimates for adaptive finite element computations[J]. SIAM Journal on Numerical Analysis,1989,15(4): 746-754.
|
[2] |
ZIENKIEWICZ O C, ZHU J Z. A simple error estimator and adaptive procedure for practical engineering analysis[J]. International Journal for Numerical Methods in Engineering,1987,24(2): 337-357.
|
[3] |
ZIENKIEWICZ O C, TAYLOR R L, ZHU J Z. The Finite Element Method: Its Basis and Fundamentals [M]. 7th ed. Singapore: Elsevier, 2013.
|
[4] |
BANGERTH W, RANNACHER R. Adaptive Finite Element Methods for Differential Equations [M]. Springer, 2013.
|
[5] |
LI X D, WIBERG N E. Implementation and adaptivity of a space-time finite element method for structural dynamics[J]. Computer Methods in Applied Mechanics & Engineering,1998, 156(1/4): 211-229.
|
[6] |
THOMPSON L L, HE D T. Adaptive space-time finite element methods for the wave equation on unbounded domains[J]. Computer Methods in Applied Mechanics & Engineering,2005,194(18): 1947-2000.
|
[7] |
张雄, 王天舒, 刘岩. 计算动力学[M]. 2版. 北京: 清华大学出版社, 2015.(ZHANG Xiong, WANG Tianshu, LIU Yan. Computational Dynamics [M]. 2nd ed. Beijing: Tsinghua University Press, 2015.(in Chinese))
|
[8] |
BLUM H, RADEMACHER A, SCHRDER A. Space adaptive finite element methods for dynamic Signorini problems[J].Computational Mechanics,2008, 44(4): 481-491.
|
[9] |
MAYR M, WALL W A, GEE M W. Adaptive time stepping for fluid-structure interaction solvers[J]. Finite Elements in Analysis and Design,2018,141: 55-69.
|
[10] |
袁驷, 王枚. 一维有限元后处理超收敛解答计算的EEP法[J]. 工程力学, 2004,21(2): 1-9.(YUAN Si, WANG Mei. An element-energy-projection method for post-computation of super-convergent solutions in one-dimensional FEM[J].Engineering Mechanics,2004,21(2): 1-9.(in Chinese))
|
[11] |
王枚, 袁驷. Timoshenko梁单元超收敛结点应力的EEP法计算[J]. 应用数学和力学, 2004,25(11): 1124-1134.(WANG Mei, YUAN Si. Computation of super-convergent nodal stresses of Timoshenko beam elements by EEP method[J]. Applied Mathematics and Mechanics(English Edition),2004,25(11): 1124-1134.(in Chinese))
|
[12] |
袁驷, 邢沁妍, 王旭, 等. 基于最佳超收敛阶EEP法的一维有限元自适应求解[J]. 应用数学和力学, 2008,29(5): 533-543.(YUAN Si, XING Qinyan, WANG Xu, et al. Self-adaptive strategy for one-dimensional finite element method based on EEP method with optimal super-convergence order[J]. Applied Mathematics and Mechanics(English Edition),2008,29(5): 533-543.(in Chinese))
|
[13] |
〖JP2〗YUAN S, DU Y, XING Q Y, et al. Self-adaptive one-dimensional nonlinear finite element method based on element energy projection method[J]. Applied Mathematics and Mechanics(English Edition),2014,35(10): 1223-1232.
|
[14] |
YUAN Si, DONG Yiyi, XING Qinyan, et al. Adaptive finite element method of lines with local mesh refinement in maximum norm based on element energy projection method[J]. International Journal of Computational Methods,2019,18(3): 195008.
|
[15] |
YUAN S, WU Y, XING Q Y. Recursive super-convergence computation for multi-dimensional problems via one-dimensional element energy projection technique[J]. Applied Mathematics and Mechanics (English Edition),2018,39(7): 1031-1044.
|
[16] |
LIU P F, XING Q Y, DONG Y Y, et al. Application of finite layer method in pavement structural analysis[J].Applied Sciences,2017,7(6): 611.
|
[17] |
邢沁妍, 杨杏, 袁驷. 离散系统运动方程的Galerkin有限元EEP法自适应求解[J]. 应用数学和力学, 2017,38(2): 133-143.(XING Qinyan, YANG Xing, YUAN Si. An EEP adaptive strategy of the Galerkin FEM for dynamic equations of discrete systems[J]. Applied Mathematics and Mechanics,2017,38(2): 133-143.(in Chinese))
|
[18] |
邢向华, 张雄, 陆明万. 基于Galerkin法弱形式的时间积分法[J]. 工程力学, 2006,23(7): 8-12.(XING Xianghua, ZHANG Xiong, LU Mingwan. A time integration method based on the weak form Galerkin method [J]. Engineering Mechanics,2006,23(7): 8-12.(in Chinese))
|
[19] |
BORRI M, GHIRINGHELLI G L, LANZ M, et al. Dynamic response of mechanical systems by a weak Hamilton formulation[J]. Computers & Structures,1985,20(1/3): 495-508.
|
[20] |
袁驷, 袁全, 闫维明, 等. 运动方程自适应步长求解的一个新进展: 基于EEP超收敛计算的线性有限元法[J]. 工程力学, 2018,35(2): 13-20.(YUAN Si, YUAN Quan, YAN Weiming, et al. A new development of solution of equations of motion with adaptive time-step size: linear FEM based on EEP super-convergence technique[J]. Engineering Mechanics,2018,35(2): 13-20.(in Chinese))
|
[21] |
袁全, 袁驷, 李易, 等. 线性元时程积分按最大模自适应步长公式的证明[J]. 工程力学, 2018,35(8): 9-13.(YUAN Quan, YUAN Si, LI Yi, et al. Proof of adaptive time-step size formula based on maximum norm in time integration of linear elements[J]. Engineering Mechanics,2018,35(8): 9-13.(in Chinese))
|
[22] |
杨杏. 基于EEP法的杆件受迫振动有限元自适应分析[D]. 硕士学位论文. 北京: 清华大学, 2016.(YANG Xing. Adaptive analysis of FEM for forced vibrations of bars based on EEP super-convergent method[D]. Master Thesis. Beijing: Tsinghua University, 2016.(in Chinese))
|
[23] |
陆琛宇. 基于EEP法的平面直杆系受迫振动自适应分析的研究[D]. 硕士论文. 北京: 清华大学, 2018.(LU Chenyu. Adaptive analysis of forced vibrations for skeletal systems based on EEP super-convergent method[D]. Master Thesis. Beijing: Tsinghua University, 2018.(in Chinese))
|
[24] |
XING Q Y, LU C Y, YANG X, et al. Adaptive finite element analysis for forced vibration of Euler beams in transverse direction with EEP method[C]// Proceeding of the 15th East Asia-Pacific Conference on Structural Engineering and Constrcution . Xi’an, China, 2017.
|
[25] |
袁驷, 邢沁妍. 一维Ritz有限元超收敛计算的EEP法简约格式的误差估计[J]. 工程力学, 2014,31(12): 1-3.(YUAN Si, XING Qinyan. A direct derivation and proof of super-convergence of EEP displacement of simplified form in one-dimensional Ritz FEM[J]. Engineering Mechanics,2014,31(12): 1-3.(in Chinese))
|