[1] |
LARMOR J. How could a rotating body such as the sun become a magnet[J]. Reports of the British Association,1919,〖STHZ〗 87: 159-160.
|
[2] |
COWLING T G. Thestability of gaseous stars[J]. Monthly Notices of the Royal Astronomical Society,1934,94: 768-782.
|
[3] |
FERRARO V C A. The non-uniform rotation of the sun and its magnetic fiel[J]. Monthly Notices of the Royal Astronomical Society,1937,97: 458-472.
|
[4] |
HARTMANN J. Theory of the laminar flow of an electrically conductive liquid in a homogeneous magnetic field[J]. Mathematisk-Fysiske Meddelelser, 1937,6: 1-28.
|
[5] |
ALFVN H. On the cosmogony of the solar system[J]. Stockholms Observatoriums Annaler,1942,14(2): 85-100.
|
[6] |
SHERCLIFF J A. Steady motion of conducting fluids in pipes under transverse magneticfields[J]. Mathematical Proceedings of the Cambridge Philosophical Society,1953,49: 136-144.
|
[7] |
SHERCLIFF J A. The flow of conducting fluids in circular pipes under transversemagnetic fields[J]. Journal of Fluid Mechanics,1956,1(6): 644-666.
|
[8] |
RDLER K H. Mean-field approach to spherical dynamo models[J]. Astronomische Nachrichten,1980,301(3): 101-129.
|
[9] |
XU B, LI B Q, STOCK D E. An experimental study of thermally induced convection of molten gallium in magnetic fields[J]. International Journal of Heat and Mass Transfer,2006,49(13/14): 2009-2019.
|
[10] |
SMITH D L, PARK J H, LYUBLINSKI I. Progress in coating development for fusion systems[J]. Fusion Engineering and Design,2002,61/62: 629-641.
|
[11] |
YING A Y, GAIZER A A. The effects of imperfect insulator coatings on MHD and heat transfer in rectangular ducts[J]. Fusion Engineering and Design,1994,27: 634-641.
|
[12] |
LIU Y J, SUN W H. Elementary wave interactions in magnetogasdynamics[J]. Indian Journal of Pure and Applied Mathematics,2016,47(1): 33-57.
|
[13] |
LIU Y J, SUN W H. Riemann problem and wave interactions in magnetogasdynamics[J]. Journal of Mathematical Analysis and Applications,2013,397(2): 454-466.
|
[14] |
SHEN C. The Riemann problem for the pressureless Euler system with the Coulomb-like friction term[J]. IMA Journal of Applied Mathematics,2016,81(1): 76-99.
|
[15] |
SHENG W C, ZHANG T. The Riemann problem for the transportation equations in gas dynamics[J]. Memoirs of the American Mathematical Society,1999,137: 654.
|
[16] |
WEINAN E, RYKOV Y G, SINAI Y G. Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics[J]. Communications in Mathematical Physics,1996,〖STHZ〗 177(2): 349-380.
|
[17] |
SHANDARIN S F, ZELDOVICH Y B. Large-scale structure of the universe: turbulence, intermittency, structures in a self-gravitating medium[J]. Review of Modern Physics,1989,61(2): 185-220.
|
[18] |
SUN M N. The exact Riemann solutions to the generalized Chaplygin gas equations with friction[J]. Communications in Nonlinear Science and Numerical Simulation,2016,36: 342-353.
|
[19] |
BRENIER Y. Solutions with concentration to the Riemann problem for the one-dimensional Chaplygin gas equations[J]. Journal of Mathematical Fluid Mechanics,2005,7(3): 326-331.
|
[20] |
CHEN S X, QU A F. Two-dimensional Riemann problems for Chaplygin gas[J]. SIAM Journal on Mathematical Analysis,2012,44(3): 2146-2178.
|
[21] |
GUO L H, LI T, PAN L J,et al. The Riemann problem with delta initial data for the one-dimensional Chaplygin gas equations with a source term[J]. Nonlinear Analysis: Real World Applications,2018,41: 588-606.
|
[22] |
SHEN C. The Riemann problem for the Chaplygin gas equations with a source term[J]. Zeitschrift fǜr Angewandte Mathematik und Mechik,2016,96(6): 681-695.
|
[23] |
GUO L H, SHENG W C, ZHANG T. The two-dimensional Riemann problem for isentropic Chaplygin gas dynamic system[J]. Communications on Pure & Applied Analysis,2010,9(2): 431-458.
|
[24] |
WANG G D. The Riemann problem for one dimensional generalized Chaplygin gas dynamics[J]. Journal of Mathematical Analysis and Applications,2013,403(2): 434-450.
|
[25] |
FACCANONI G, MANGENEY A. Exact solution for granular flows[J]. International Journal for Numerical and Analytical Methods,2012,37: 1408-1433.
|
[26] |
CHEN G Q, LIU H L. Formation of δ -shocks and vacuum states in the vanishing pressure limit of solutions to the Euler equations for isentropic fluids[J]. SIAM Journal on Mathematical Analysis,2003,34(4): 925-938.
|
[27] |
LI J Q. Note on the compressible Euler equations with zero temperature[J]. Applied Mathematics Letters,2001,14(4): 519-523.
|
[28] |
SHEN C. The limits of Riemann solutions to the isentropic magnetogasdynamics[J]. Applied Mathematics Letters,2011,24(7): 1124-1129.
|
[29] |
CHEN J J, SHENG W C. The Riemann problem and the limit solutions as magnetic field vanishes to magnetogasdynamics for generalized Chaplygin gas[J]. Communications on Pure & Applied Analysis,2018,17(1): 127-142.
|
[30] |
SHENG W C, WANG G J, YIN G. Delta wave and vacuum state for generalized Chaplygin gas dynamics system as pressure vanishes[J]. Nonlinear Analysis: Real World Applications,2015,22: 115-128.
|
[31] |
YANG H C, WANG J H. Delta-shocks and vacuum states in the vanishing pressure limit of solutions to the isentropic Euler equations for modified Chaplygin gas[J]. Journal of Mathematical Analysis and Applications,2014,413(2): 800-820.
|
[32] |
SHEN C, SUN M N. Formation of delta shocks and vacuum states in the vanishing pressure limit of Riemann solutions to the perturbed Aw-Rascle model[J]. Journal of Differential Equations,2010,249(12): 3024-3051.
|
[33] |
GUO L H, LI T, YIN G. The limit behavior of the Riemann solutions to the generalized Chaplygin gas equations with a source term[J]. Journal of Mathematical Analysis and Applications,2017,455(1): 127-140.
|
[34] |
尹淦, 谢娇艳. 广义Chaplygin气体磁流体力学方程组的Riemann问题[J]. 应用数学与计算数学学报, 2013,〖STHZ〗 27(4): 508-516.(YIN Gan, XIE Jiaoyan. Riemann problem for generalized Chaplygin magnetogasdynamics equations[J]. Communication on Applied Mathematics Computation,2013,27(4): 508-516.(in Chinese))
|