留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

带有源项的广义Chaplygin气体磁流体Euler方程组Riemann解的极限

俞康宁 郭俐辉

俞康宁, 郭俐辉. 带有源项的广义Chaplygin气体磁流体Euler方程组Riemann解的极限[J]. 应用数学和力学, 2020, 41(4): 420-437. doi: 10.21656/1000-0887.400122
引用本文: 俞康宁, 郭俐辉. 带有源项的广义Chaplygin气体磁流体Euler方程组Riemann解的极限[J]. 应用数学和力学, 2020, 41(4): 420-437. doi: 10.21656/1000-0887.400122
YU Kangning, GUO Lihui. Limits of Riemann Solutions for Generalized Chaplygin Gas Magnetohydrodynamic Euler Equations With Source Terms[J]. Applied Mathematics and Mechanics, 2020, 41(4): 420-437. doi: 10.21656/1000-0887.400122
Citation: YU Kangning, GUO Lihui. Limits of Riemann Solutions for Generalized Chaplygin Gas Magnetohydrodynamic Euler Equations With Source Terms[J]. Applied Mathematics and Mechanics, 2020, 41(4): 420-437. doi: 10.21656/1000-0887.400122

带有源项的广义Chaplygin气体磁流体Euler方程组Riemann解的极限

doi: 10.21656/1000-0887.400122
基金项目: 国家自然科学基金(11761068;11401508;11461066)新疆维吾尔自治区自然科学基金(2017D01C053)
详细信息
    作者简介:

    俞康宁(1994—),男,硕士生(E-mail: ycorning@126.com);郭俐辉(1979—),男,教授(通讯作者.E-mail: lihguo@126.com).

  • 中图分类号: O175.24

Limits of Riemann Solutions for Generalized Chaplygin Gas Magnetohydrodynamic Euler Equations With Source Terms

Funds: The National Natural Science Foundation of China(11761068;11401508;11461066)
  • 摘要: 研究了带有源项的广义Chaplygin气体磁流体Euler方程组Riemann解的极限.由于非齐次项的影响,带有源项的广义Chaplygin气体磁流体Euler方程组Riemann解不再是自相似的.当压力和磁感强度同时消失时,它的解会收敛到零压流输运方程组的Riemann解,解中会出现δ-激波和真空现象.同时研究还得到了仅当磁感强度消失时,它的解会收敛到非齐次广义Chaplygin气体Euler方程组的Riemann解,并且解中只出现δ-激波.
  • [1] LARMOR J. How could a rotating body such as the sun become a magnet[J]. Reports of the British Association,1919,〖STHZ〗 87: 159-160.
    [2] COWLING T G. Thestability of gaseous stars[J]. Monthly Notices of the Royal Astronomical Society,1934,94: 768-782.
    [3] FERRARO V C A. The non-uniform rotation of the sun and its magnetic fiel[J]. Monthly Notices of the Royal Astronomical Society,1937,97: 458-472.
    [4] HARTMANN J. Theory of the laminar flow of an electrically conductive liquid in a homogeneous magnetic field[J]. Mathematisk-Fysiske Meddelelser, 1937,6: 1-28.
    [5] ALFVN H. On the cosmogony of the solar system[J]. Stockholms Observatoriums Annaler,1942,14(2): 85-100.
    [6] SHERCLIFF J A. Steady motion of conducting fluids in pipes under transverse magneticfields[J]. Mathematical Proceedings of the Cambridge Philosophical Society,1953,49: 136-144.
    [7] SHERCLIFF J A. The flow of conducting fluids in circular pipes under transversemagnetic fields[J]. Journal of Fluid Mechanics,1956,1(6): 644-666.
    [8] RDLER K H. Mean-field approach to spherical dynamo models[J]. Astronomische Nachrichten,1980,301(3): 101-129.
    [9] XU B, LI B Q, STOCK D E. An experimental study of thermally induced convection of molten gallium in magnetic fields[J]. International Journal of Heat and Mass Transfer,2006,49(13/14): 2009-2019.
    [10] SMITH D L, PARK J H, LYUBLINSKI I. Progress in coating development for fusion systems[J]. Fusion Engineering and Design,2002,61/62: 629-641.
    [11] YING A Y, GAIZER A A. The effects of imperfect insulator coatings on MHD and heat transfer in rectangular ducts[J]. Fusion Engineering and Design,1994,27: 634-641.
    [12] LIU Y J, SUN W H. Elementary wave interactions in magnetogasdynamics[J]. Indian Journal of Pure and Applied Mathematics,2016,47(1): 33-57.
    [13] LIU Y J, SUN W H. Riemann problem and wave interactions in magnetogasdynamics[J]. Journal of Mathematical Analysis and Applications,2013,397(2): 454-466.
    [14] SHEN C. The Riemann problem for the pressureless Euler system with the Coulomb-like friction term[J]. IMA Journal of Applied Mathematics,2016,81(1): 76-99.
    [15] SHENG W C, ZHANG T. The Riemann problem for the transportation equations in gas dynamics[J]. Memoirs of the American Mathematical Society,1999,137: 654.
    [16] WEINAN E, RYKOV Y G, SINAI Y G. Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics[J]. Communications in Mathematical Physics,1996,〖STHZ〗 177(2): 349-380.
    [17] SHANDARIN S F, ZELDOVICH Y B. Large-scale structure of the universe: turbulence, intermittency, structures in a self-gravitating medium[J]. Review of Modern Physics,1989,61(2): 185-220.
    [18] SUN M N. The exact Riemann solutions to the generalized Chaplygin gas equations with friction[J]. Communications in Nonlinear Science and Numerical Simulation,2016,36: 342-353.
    [19] BRENIER Y. Solutions with concentration to the Riemann problem for the one-dimensional Chaplygin gas equations[J]. Journal of Mathematical Fluid Mechanics,2005,7(3): 326-331.
    [20] CHEN S X, QU A F. Two-dimensional Riemann problems for Chaplygin gas[J]. SIAM Journal on Mathematical Analysis,2012,44(3): 2146-2178.
    [21] GUO L H, LI T, PAN L J,et al. The Riemann problem with delta initial data for the one-dimensional Chaplygin gas equations with a source term[J]. Nonlinear Analysis: Real World Applications,2018,41: 588-606.
    [22] SHEN C. The Riemann problem for the Chaplygin gas equations with a source term[J]. Zeitschrift fǜr Angewandte Mathematik und Mechik,2016,96(6): 681-695.
    [23] GUO L H, SHENG W C, ZHANG T. The two-dimensional Riemann problem for isentropic Chaplygin gas dynamic system[J]. Communications on Pure & Applied Analysis,2010,9(2): 431-458.
    [24] WANG G D. The Riemann problem for one dimensional generalized Chaplygin gas dynamics[J]. Journal of Mathematical Analysis and Applications,2013,403(2): 434-450.
    [25] FACCANONI G, MANGENEY A. Exact solution for granular flows[J]. International Journal for Numerical and Analytical Methods,2012,37: 1408-1433.
    [26] CHEN G Q, LIU H L. Formation of δ -shocks and vacuum states in the vanishing pressure limit of solutions to the Euler equations for isentropic fluids[J]. SIAM Journal on Mathematical Analysis,2003,34(4): 925-938.
    [27] LI J Q. Note on the compressible Euler equations with zero temperature[J]. Applied Mathematics Letters,2001,14(4): 519-523.
    [28] SHEN C. The limits of Riemann solutions to the isentropic magnetogasdynamics[J]. Applied Mathematics Letters,2011,24(7): 1124-1129.
    [29] CHEN J J, SHENG W C. The Riemann problem and the limit solutions as magnetic field vanishes to magnetogasdynamics for generalized Chaplygin gas[J]. Communications on Pure & Applied Analysis,2018,17(1): 127-142.
    [30] SHENG W C, WANG G J, YIN G. Delta wave and vacuum state for generalized Chaplygin gas dynamics system as pressure vanishes[J]. Nonlinear Analysis: Real World Applications,2015,22: 115-128.
    [31] YANG H C, WANG J H. Delta-shocks and vacuum states in the vanishing pressure limit of solutions to the isentropic Euler equations for modified Chaplygin gas[J]. Journal of Mathematical Analysis and Applications,2014,413(2): 800-820.
    [32] SHEN C, SUN M N. Formation of delta shocks and vacuum states in the vanishing pressure limit of Riemann solutions to the perturbed Aw-Rascle model[J]. Journal of Differential Equations,2010,249(12): 3024-3051.
    [33] GUO L H, LI T, YIN G. The limit behavior of the Riemann solutions to the generalized Chaplygin gas equations with a source term[J]. Journal of Mathematical Analysis and Applications,2017,455(1): 127-140.
    [34] 尹淦, 谢娇艳. 广义Chaplygin气体磁流体力学方程组的Riemann问题[J]. 应用数学与计算数学学报, 2013,〖STHZ〗 27(4): 508-516.(YIN Gan, XIE Jiaoyan. Riemann problem for generalized Chaplygin magnetogasdynamics equations[J]. Communication on Applied Mathematics Computation,2013,27(4): 508-516.(in Chinese))
  • 加载中
计量
  • 文章访问数:  1731
  • HTML全文浏览量:  376
  • PDF下载量:  324
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-25
  • 修回日期:  2019-07-13
  • 刊出日期:  2020-04-01

目录

    /

    返回文章
    返回