留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

周期壁面电势调制下平行板微管道中的电磁电渗流动

王爽 菅永军

王爽, 菅永军. 周期壁面电势调制下平行板微管道中的电磁电渗流动[J]. 应用数学和力学, 2020, 41(4): 396-405. doi: 10.21656/1000-0887.400151
引用本文: 王爽, 菅永军. 周期壁面电势调制下平行板微管道中的电磁电渗流动[J]. 应用数学和力学, 2020, 41(4): 396-405. doi: 10.21656/1000-0887.400151
WANG Shuang, JIAN Yongjun. Magnetohydrodynamic Electroosmotic Flow in Zeta Potential Patterned Micro-Parallel Channels[J]. Applied Mathematics and Mechanics, 2020, 41(4): 396-405. doi: 10.21656/1000-0887.400151
Citation: WANG Shuang, JIAN Yongjun. Magnetohydrodynamic Electroosmotic Flow in Zeta Potential Patterned Micro-Parallel Channels[J]. Applied Mathematics and Mechanics, 2020, 41(4): 396-405. doi: 10.21656/1000-0887.400151

周期壁面电势调制下平行板微管道中的电磁电渗流动

doi: 10.21656/1000-0887.400151
基金项目: 国家自然科学基金(11772162;11472140);内蒙古自治区高等院校科研项目(NJZY18006);内蒙古自治区自然科学基金(2016MS0106);内蒙古自治区“草原英才”工程(1200012102013)
详细信息
    作者简介:

    王爽(1994—),女,硕士生(E-mail: 515425879@qq.com);菅永军(1974—),男,教授,博士生导师(通讯作者. E-mail: jianyj@imu.edu.cn).

  • 中图分类号: O357.1

Magnetohydrodynamic Electroosmotic Flow in Zeta Potential Patterned Micro-Parallel Channels

Funds: The National Natural Science Foundation of China(11772162;11472140)
  • 摘要: 研究了平行板微管道中二维磁流体(MHD)电渗流(EOF)在zeta电势调制下的流动.流体的流动是由两个外加水平电场和垂直磁场所产生的Lorentz力和电场力的组合驱动的.在滑移边界条件下,得到了流函数以及速度分布的解析解.详细讨论了速度随Hartmann数Ha、滑移长度B、电动宽度K等相关的无量纲参数量级变化的变化规律.结果表明,调制的壁面电势会产生一个垂直速度分量,从而导致涡旋的形成.此外,可以观察到,速度的大小随着滑移长度B和电动宽度K的增大而增大.值得注意的是,速度的大小随着Ha值的增大而减小,这与一维流动中Ha值存在临界值的情况不同.
  • [1] GRAVESEN P, BRANEBJERG J, JENSEN O S. Microfluidics: a review[J]. Journal of Micromechanics and Microengineering,1993,3(4): 168.
    [2] BECKER H, GRTNER C. Polymer microfabrication methods for microfluidic analytical applications[J]. Electrophoresis,2000,21(1): 12-26.
    [3] ZIAIE B, BALDI A, LEI M, et al. Hard and soft micromachining for BioMEMS: review of techniques and examples of applications in microfluidics and drug delivery[J]. Advanced Drug Delivery Reviews,2004,56(2): 145-172.
    [4] NGUYEN N T, WU Z. Micromixers: a review[J]. Journal of Micromechanics and Microengineering,2005,15(2): R1-R16.
    [5] OHNO K, TACHIKAWA K, MANZ A. Microfluidics: applications for analytical purposes in chemistry and biochemistry[J]. Electrophoresis,2008,29(22): 4443-4453.
    [6] CULBERTSON C T, RAMSEY R S, RAMSEY J M. Electroosmotically induced hydraulic pumping on microchips: differential ion transport[J]. Analytical Chemistry,2000,72(10): 2285-2291.
    [7] DASGUPTA P K, LIU S. Electroosmosis: a reliable fluid propulsion system for flow injection analysis[J]. Analytical Chemistry,1994,66(11): 1792-1798.
    [8] BAU H H, ZHU J, QIAN S, et al. A magneto-hydrodynamically controlled fluidic network[J]. Sensors and Actuators B: Chemical,2003,88(2): 205-216.
    [9] QIAN S, BAU H H. Magneto-hydrodynamics based microfluidics[J]. Mechanics Research Communications,2009,36(1): 10-21.
    [10] JANG J, LEE S S. Theoretical and experimental study of MHD (magnetohydrodynamic) micropump[J]. Sensors and Actuators A: Physical,2000,80(1): 84-89.
    [11] NGUYEN N T. Micro-magnetofluidics: interactions between magnetism and fluid flow on the microscale[J]. Microfluid Nanofluid,2012,12: 1-16.
    [12] RIVERO M, CUEVAS S. Analysis of the slip condition in magnetohydrodynamic (MHD) micropumps[J]. Sensors and Actuators B: Chemical,2012,166: 884-892.
    [13] CHAKRABORTY S, PAUL D. Microchannel flow control through a combined electromagnetohydrodynamic transport[J]. Journal of Physics D: Applied Physics,2006,39(24): 5364-5371.
    [14] JIAN Y J, SI D Q, CHANG L, et al. Transient rotating electromagnetohydrodynamic micropumps between two infinite microparallel plates[J]. Chemical Engineering Science,2015,134: 12-22.
    [15] SI D Q, JIAN Y J. Electromagnetohydrodynamic (EMHD) micropump of Jeffrey fluids through two parallel microchannels with corrugated walls[J]. Journal of Physics D: Applied Physics,2015,48(8): 085501.
    [16] XIE Z Y, JIAN Y J. Entropy generation of two-layer magnetohydrodynamic electroosmotic flow through microparallel channels[J]. Energy,2017,139: 1080-1093.
    [17] STROOCK A D, WECK M, CHIU D T, et al. Patterning electro-osmotic flow with patterned surface charge[J]. Physical Review Letters,2000,84(15): 3314-3317.
    [18] BIDDISS E, ERICKSON D, LI D. Heterogeneous surface charge enhanced micromixing for electrokinetic flows[J]. Analytical Chemistry,2004,76(11): 3208-3213.
    [19] AJDARI A. Generation of transverse fluid currents and forces by an electric field: electro-osmosis on charge-modulated and undulated surfaces[J]. Physical Review E,1996,53(5): 4996-5005.
    [20] YARIV E. Electro-osmotic flow near a surface charge discontinuity[J]. Journal of Fluid Mechanics,2004,521: 181-189.
    [21] GHOSH U, CHAKRABORTY S. Electroosmosis of viscoelastic fluids over charge modulated surfaces in narrow confinements[J]. Physics of Fluids,2015,27(6): 062004.
    [22] GHOSH U, CHAKRABORTY S. Electrokinetics over charge-modulated surfaces in the presence of patterned wettability: role of the anisotropic streaming potential[J]. Physical Review E,2013,88(3): 033001.
    [23] MANDAL S, GHOSH U, BANDOPADHYAY A, et al. Electro-osmosis of superimposed fluids in the presence of modulated charged surfaces in narrow confinements[J]. Journal of Fluid Mechanics,2015,776: 390-429.
    [24] STONE H A, STROOCK A D, AJDARI A. Engineering flows in small devices: microfluidics toward a lab-on-a-chip[J]. Annual Review of Fluid Mechanics,2004,36: 381-411.
    [25] DATTA S, CHOUDHARY J N. Effect of hydrodynamic slippage on electro-osmotic flow in zeta potential patterned nanochannels[J]. Fluid Dynamics Research,2013,45(5): 055502.
    [26] AJDARI A.Electro-osmosis on inhomogeneously charged surfaces[J]. Physical Review Letters,1995,75(4): 755-758.
    [27] EIJKEL J C T. Liquid slip in micro- and nanofluidics: recent research and its possible implications[J]. Lab on a Chip,2007,7(3): 299-301.
    [28] JIAN Y J, CHANG L. Electromagnetohydrodynamic (EMHD) micropumps under a spatially non-uniform magnetic field[J]. AIP Advances,2015,5(5): 057121.
    [29] LIU Y P, JIAN Y J, LIU Q S, et al. Alternating current magnetohydrodynamic electroosmotic flow of Maxwell fluids between two micro-parallel plates[J]. Journal of Molecular Liquids,2015,211: 784-791.
    [30] 许丽娜, 菅永军. 柔性圆柱形微管道内的电动流动及传热研究[J]. 应用数学和力学, 2019,40(4): 408-418.(XU Lina, JIAN Yongjun. Electrokinetic flow and heat transfer in soft microtubes[J]. Applied Mathematics and Mechanics,2019,40(4): 408-418.(in Chinese)
  • 加载中
计量
  • 文章访问数:  1153
  • HTML全文浏览量:  180
  • PDF下载量:  236
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-26
  • 修回日期:  2019-05-14
  • 刊出日期:  2020-04-01

目录

    /

    返回文章
    返回