[1] |
ALLEE W C. Animal Aggregations: a Study in General Sociology [M]. Chicago: Chicago University Press, 1931.
|
[2] |
ALLEE W C, PARK O, EMERSON A E, et al. Principles of Animal Ecology [M]. Philadelphia: Saunders Company, 1949.
|
[3] |
DENNIS B. Allee effects: population growth, critical density, and the chance of extinction[J]. Natural Resource Modeling,1989,3(4): 481-538.
|
[4] |
MCCARTHY M A. The Allee effect, finding mates and theoretical models[J]. Ecological Modelling,1997,103(1): 99-102.
|
[5] |
STEPHENS P A, SUTHERLAND W J. Consequences of the Allee effect for behaviour, ecology and conservation[J]. Trends in Ecology & Evolution,1999,14(10): 401-405.
|
[6] |
BOUKAL D S, BEREC L. Single-species models of the Allee effect: extinction boundaries, sex ratios and mate encounters[J]. Journal of Theoretical Biology,2002,218(3): 375-394.
|
[7] |
WANG W X, ZHANG Y B, LIU C. Analysis of a discrete-time predator-prey system with Allee effect[J]. Ecological Complexity,2011,8(1): 81-85.
|
[8] |
YU T, TIAN Y, GUO H, et al. Dynamical analysis of an integrated pest management predator-prey model with weak Allee effect[J]. Journal of Biological Dynamics,2019,13(1): 218-244.
|
[9] |
AZIZ-ALAOUI M A, OKIYE M D. Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-type Ⅱ schemes[J]. Applied Mathematics Letters,2003,16(7): 1069-1075.
|
[10] |
CAI Y L, ZHAO C D, WANG W M, et al. Dynamics of a Leslie-Gower predator-prey model with additive Allee effect[J]. Applied Mathematical Modelling,2015,39(7): 2092-2106.
|
[11] |
FILIPPOV A F. Differential Equations With Discontinuous Right-Hand Sides [M]. Dordrecht: Kluwer Academic Publishers, 1988.
|
[12] |
UTKIN V I, GULDNER J, SHI J X. Sliding Model Control in Electromechanical Systems [M]. London: Taylor Francis Group, 2009.
|
[13] |
KUZNETSOV YU A, RINALDI S, GRAGNANI A. One parameter bifurcations in planar Filippov systems[J]. International Journal of Bifurcation and Chaos,2003,13(8): 2157-2188.
|
[14] |
DI BERNARDO M, BUDD C J, CHAMPNEYS A R, et al. Bifurcations in nonsmooth dynamical systems[J]. SIAM Review,2008,50(4): 629-701.
|
[15] |
KRIVAN V. On the Gause predator-prey model with a refuge: a fresh look at the history[J]. Journal of Theoretical Biology,2011,274(1): 67-73.
|
[16] |
TANG S Y, LIANG J H, XIAO Y N, et al. Sliding bifurcations of Filippov two stage pest control models with economic thresholds[J]. SIAM Journal on Applied Mathematics,2012,72(4): 1061-1080.
|
[17] |
TANG S Y, LIANG J H. Global qualitative analysis of a non-smooth Gause predator-prey model with a refuge[J]. Nonlinear Analysis: Theory, Methods & Applications,2013,76: 165-180.
|