留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

固定时间梯度流在l1-l2范数中的稀疏重构

胡登洲 何兴

胡登洲, 何兴. 固定时间梯度流在l1-l2范数中的稀疏重构[J]. 应用数学和力学, 2019, 40(11): 1270-1277. doi: 10.21656/1000-0887.400202
引用本文: 胡登洲, 何兴. 固定时间梯度流在l1-l2范数中的稀疏重构[J]. 应用数学和力学, 2019, 40(11): 1270-1277. doi: 10.21656/1000-0887.400202
HU Dengzhou, HE Xing. Sparse Reconstruction of Fixed-Time Gradient Flow in the l1-l2 Norm[J]. Applied Mathematics and Mechanics, 2019, 40(11): 1270-1277. doi: 10.21656/1000-0887.400202
Citation: HU Dengzhou, HE Xing. Sparse Reconstruction of Fixed-Time Gradient Flow in the l1-l2 Norm[J]. Applied Mathematics and Mechanics, 2019, 40(11): 1270-1277. doi: 10.21656/1000-0887.400202

固定时间梯度流在l1-l2范数中的稀疏重构

doi: 10.21656/1000-0887.400202
基金项目: 国家自然科学基金(61773320)
详细信息
    作者简介:

    胡登洲(1992—),男,硕士生(E-mail: 1076060236@qq.com);何兴(1986—),男,教授,博士生导师(通讯作者. E-mail: hexingdoc@swu.edu.cn).

  • 中图分类号: O357.41

Sparse Reconstruction of Fixed-Time Gradient Flow in the l1-l2 Norm

Funds: The National Natural Science Foundation of China(61773320)
  • 摘要: 压缩感知(compressed sensing,CS)是一种全新的信号采样技术,对于稀疏信号,它能够以远小于传统的Nyquist采样定理的采样点来重构信号。在压缩感知中, 采用动态连续系统,对l1-l2范数的稀疏信号重构问题进行了研究。提出了一种基于固定时间梯度流的稀疏信号重构算法,证明了该算法在Lyapunov意义上的稳定性并且收敛于问题的最优解。最后通过与现有的投影神经网络算法的对比,体现了该算法的可行性以及在收敛速度上的优势.
  • [1] CANDS E J. Compressive sampling[J]. Proceedings of International Congress of Mathematicians,2006,17(2): 1433-1452.
    [2] DONOHO D. Compressed sensing[J]. IEEE Transactions on Information Theory,2006,52(4): 1289-1306.
    [3] COMBETTES P L. Signal recovery by proximal forward-backward splitting[J]. Multiscale Modeling & Simulation,2005, 4(4): 1168-1200.
    [4] ZHU J, ROSSET S, HASTIE T. 1-norm support vector machines[C]// Advances in Neural Information Processing Systems . Vancouver, Canada: MIT Press, 2003: 49-56.
    [5] NATARAJAN B K. Sparse approximation solutions to linear systems[J]. SIAM Journal on Computing,1995,24(2): 227-234.
    [6] YIN P, LOU Y, HE Q, et al. Minimization of l1-l2 for compressed sensing[J]. SIAM Journal on Scientific Computing,2015,37(1): 536-563.
    [7] FIGUEIREDO M A T, NOWAK R D, WRIGHT S J. Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems[J]. IEEE Journal of Selected Topics in Signal Processing,2007,1(4): 586-597.
    [8] CANDES E, TAO T. Decoding by linear programming[J]. IEEE Transactions on Information Theory,2005, 51(12): 4203-4215.
    [9] YANG A, GANESH A, SASTRY S, et al. Fast l1-minimization algorithms and an application in robust face recognition[C]//Proceedings of the 17th IEEE International Conference on Image Processing (ICIP) . Hong Kong, China, 2010.
    [10] ANDRES A M, PADOVANI S, TEPPER M, et al. Face recognition on partially occluded images using compressed sensing[J]. Pattern Recognition Letters,2014,36: 235-242.
    [11] MALLAT S. A Wavelet Tour of Signal Processing: the Sparse Way [M]. Burlington: Academic Press, 2009.
    [12] BRUCKSTEIN A M, DONOHO D L, ELAD M. From sparse solutions of systems of equations to sparse modeling of signals and images[J]. SIAM Review,2009,51: 34-81.
    [13] 陈鹏清, 黄尉. 基于l1-l2范数的块稀疏信号重构[J]. 应用数学和力学, 2017,38(8): 932-942.(CHEN Pengqing, HUANG Wei. Block-sparse signal recovery based on l1-l2 norm minimization[J]. Applied Mathematice and Mechanics,2017,38(8): 932-942.(in Chinese))
    [14] CHEN S S, DONOHO D L, SAUNDERS M A. Atomic decomposition by basis pursuit[J]. SIAM Review,2001, 43(1): 129-159.
    [15] KIM S J, KOH K, LUSTIG M, et al. An interior-point method for large-scale l1-regularized least squares[J]. IEEE Journal on Selected Topics in Signal Processing,2007,51: 606-617.
    [16] TANK D W, HOPFIELD J J. Simple neural optimization network: an A/D converter, signal decision circuit and a linear programming circuit[J]. IEEE Transactions on Circuits and Systems,1986,33(5): 533-541.
    [17] BALAVOINE A, ROMBERG J, ROZELL C J. Convergence and rate analysis of neural networks for sparse approximation[J]. IEEE Transactions on Neural Networks and Learning Systems,2012,23(9): 1377-1389.
    [18] LIU Q, WANG J. L1-minimization algorithms for sparse signal reconstruction based on a projection neural network[J]. IEEE Transactions on Neural Networks and Learning Systems,2016,27(3): 698-707.
    [19] LIU Y W, HU J F. A neural network for l1-l2 minimization based on scaled gradient projection: application to compressed sensing[J]. Neurocomputing,2016,173(3): 988-993.
    [20] GARG K, PANAGOU D. A new scheme of gradient flow and saddle-point dynamics with fixed-time convergence guarantees[R/OL]. [2019-07-02]. https:/arXiv.org/abs/1808.10474v1.
    [21] FUCHS J J. Multipath time-delay detection and estimation[J]. IEEE Transactions on Signal Processing,1999,47(1): 237-243.
    [22] POLYAKOV A. Nonlinear feedback design for fixed-time stabilization of linear control systems[J]. IEEE Transactions on Automatic Control,2012,57(8): 2106-2110.
    [23] BHAT S P, BERNSTEIN D S. Finite-time stability of continuous autonomous systems[J]. SIAM Journal of Control and Optimization,2000,38(3): 751-766.
    [24] ORLOV Y. Finite time stability and robust control synthesis of uncertain switched systems[J]. SIAM Journal of Control and Optimization,2005,43(4): 1253-1271.
    [25] LOPEZ-RAMIREZ F, EFIMOV D, POLYAKOV A, et al. On necessary and sufficient conditions for fixed-time stability of continuous autonomous systems[C]//17th European Control Conference (ECC) . Cyprus, 2018.
    [26] LI C, YU X, HUANG T, et al. Distributed optimal consensus over resource allocation network and its application to dynamical economic dispatch[J]. IEEE Transactions on Neural Networks and Learning Systems,2018,29(6): 2407-2417.
  • 加载中
计量
  • 文章访问数:  1399
  • HTML全文浏览量:  263
  • PDF下载量:  328
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-02
  • 修回日期:  2019-07-09
  • 刊出日期:  2019-11-01

目录

    /

    返回文章
    返回