留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钢管混凝土柱抗爆性能数值模拟与实验验证

赵均海 孙珊珊 党会学 李新忠

赵均海, 孙珊珊, 党会学, 李新忠. 钢管混凝土柱抗爆性能数值模拟与实验验证[J]. 应用数学和力学, 2020, 41(9): 943-955. doi: 10.21656/1000-0887.400207
引用本文: 赵均海, 孙珊珊, 党会学, 李新忠. 钢管混凝土柱抗爆性能数值模拟与实验验证[J]. 应用数学和力学, 2020, 41(9): 943-955. doi: 10.21656/1000-0887.400207
ZHAO Junhai, SUN Shanshan, DANG Huixue, LI Xinzhong. Numerical Simulation and Test Validation for Concreted Filled Steel Tube Columns Under Blast Loading[J]. Applied Mathematics and Mechanics, 2020, 41(9): 943-955. doi: 10.21656/1000-0887.400207
Citation: ZHAO Junhai, SUN Shanshan, DANG Huixue, LI Xinzhong. Numerical Simulation and Test Validation for Concreted Filled Steel Tube Columns Under Blast Loading[J]. Applied Mathematics and Mechanics, 2020, 41(9): 943-955. doi: 10.21656/1000-0887.400207

钢管混凝土柱抗爆性能数值模拟与实验验证

doi: 10.21656/1000-0887.400207
基金项目: 国家自然科学基金(51878056);陕西省科技计划(社会发展领域项目)(2019SF-256);陕西省自然科学基金(2018JQ5119;2018JQ5023)
详细信息
    作者简介:

    赵均海(1960—),男,教授,博士(通讯作者. E-mail: zhaojh@chd.edu.cn).

  • 中图分类号: TU398.9

Numerical Simulation and Test Validation for Concreted Filled Steel Tube Columns Under Blast Loading

Funds: The National Natural Science Foundation of China(51878056)
  • 摘要: 利用LS-DYNA非线性有限元程序,基于多物质流固耦合方法,建立了爆炸荷载作用下钢管混凝土柱的动态响应数值模型.对比分析了模拟结果与足尺构件的爆炸破坏实验结果,验证了数值模型和计算方法的有效性,并运用参数化分析方法,研究了截面形式、比例距离、混凝土强度及钢材等级、截面形状特性等关键参数对钢管混凝土柱抗爆性能的影响.研究结果表明:钢管混凝土柱具有优越的抗爆性能,所建立的数值模型能够有效地分析钢管混凝土柱在爆炸荷载作用下的动态影响及破坏形态;圆形截面钢管混凝土柱的抗爆性能优于方形截面;提高材料等级、减小圆形截面钢管混凝土柱的径厚比、增大矩形截面钢管混凝土柱的长宽比,均有利于提升钢管混凝土柱的抗爆特性.
  • [1] Department of the Army, Navy and the Air Force, USA. Structures to resist the effects of accidental explosions: UFC 3-340-02[S]. Washington DC, 2008.
    [2] JAYASOORIYA R, THAMBIRATNAM D P, PERERA N J, et al. Blast and residual capacity analysis of reinforced concrete framed buildings[J]. Engineering Structures,2011,33(12): 3883-3495.
    [3] 陈肇元. 爆炸荷载下的混凝土结构性能与设计[M]. 北京: 中国建筑工业出版社, 2015.(CHEN Zhaoyuan. Performance and Design of Concrete Structures Under Blast Loading [M]. Beijing: China Architecture & Building Press, 2015.(in Chinese))
    [4] 梁斌, 石啸海, 余春祥, 等. 装药驱动飞片引爆炸药性能影响参数分析[J]. 应用数学和力学, 2019,40(8): 893-909.(LIANG Bin, SHI Xiaohai, YU Chunxiang, et al. Analysis of effects on shock initiation performances for booster charge structure parameters[J]. Applied Mathematics and Mechanics,2019,40(8): 893-909.(in Chinese))
    [5] 吕西林, 蒋欢军. 复杂高层建筑抗震与消能减震研究进展[J]. 建筑结构学报, 2010,31(6): 52-61.(L Xilin, JIANG Huanjun. Research progress of earthquake resistance and energy dissipation of complex tall buildings[J]. Journal of Building Structures,2010,31(6): 52-61.(in Chinese))
    [6] 韩林海. 钢管混凝土结构理论与实践[M]. 北京: 科学出版社, 2007.(HAN Linhai. Theory and Practice of Concrete-Filled Steel Tubular Structure [M]. Beijing: Science Press, 2007.(in Chinese))
    [7] FUJIKURA S, BRUNEAU M. Experimental investigation of seismically resistant bridge piers under blast loading[J]. Journal of Bridge Engineering,2011,16(1): 63-71.
    [8] 唐彪. 钢筋混凝土墩柱的抗爆性能试验研究[D]. 硕士学位论文. 南京: 东南大学, 2016.(TANG Biao. Experiment investigation of reinforced concrete bridge piers under blast loading[D]. Master Thesis. Nanjing: Southeast University, 2016.(in Chinese))
    [9] 刘路. 不同防护方式下钢筋混凝土墩柱的抗爆性能试验研究[D]. 硕士学位论文. 南京: 东南大学, 2016.(LIU Lu. Experimental study of differently protective RC piers under blast loading[D]. Master Thesis. Nanjing: Southeast University, 2016.(in Chinese))
    [10] 宗周红, 唐彪, 高超, 等. 钢筋混凝土墩柱抗爆性能试验[J]. 中国公路学报, 2017,30(9): 51-60.(ZONG Zhouhong, TANG Biao, GAO Chao, et al. Experiment on blast-resistance performance of reinforced concrete piers[J]. China Journal of Highway and Transport,2017,30(9): 51-60.(in Chinese))
    [11] 石少卿, 康建功, 汪敏, 等. ANSYS/LS-DYNA在爆炸与冲击领域内的工程应用[M]. 北京: 中国建筑工业出版社, 2011.(SHI Shaoqing, KANG Jiangong, WANG Min, et al. Engineering Applications of ANSYS/LS-DYNA in Explosion and Shock Field [M]. Beijing: China Architecture & Building Press, 2011.(in Chinese))
    [12] 李岩汀, 徐绩青, 许锡宾, 等. 结构动力响应中急动度的计算[J]. 应用数学和力学, 2017,38(8): 922-931.(LI Yanting, XU Jiqing, XU Xibin, et al. A numerical method for calculation of structural jerk responses[J]. Applied Mathematics and Mechanics,2017,38(8): 922-931.(in Chinese))
    [13] 段晓瑜, 崔庆忠, 郭永学, 等. 炸药在空气中爆炸冲击波的地面反射超压实验研究[J]. 兵工学报, 2016,37(12): 2277-2283.(DUAN Xiaoyu, CUI Qingzhong, GUO Yongxue, et al. Experimental investigation of ground reflected overpressure of shock wave in air blast[J]. Acta Armamentarii,2016,37(12): 2277-2283.(in Chinese))
    [14] SHI Y C, HAO H, LI Z X. Numerical derivation of pressure-impulse diagram for prediction of RC column damage to blast loads[J]. International Journal of Impact Engineering,2008,35(11): 1213-1227.
    [15] 张守中. 爆炸基本原理[M]. 北京: 国防工业出版社, 1988.(ZHANG Shouzhong. Basic Principles of Explosion [M]. Beijing: National Defense Industry Press, 1988.(in Chinese))
    [16] 杨仁树, 丁晨曦, 王雁冰, 等. 爆炸应力波与爆生气体对被爆介质作用效应研究[J]. 岩石力学与工程学报, 2016,35(2): 3501-3506.(YANG Renshu, DING Chenxi, WANG Yanbing, et al. Action-effect study of medium under loading of explosion stress wave and explosion gas[J]. Chinese Journal of Rock Mechanics and Engineering,2016,〖STHZ〗 35(2): 3501-3506.(in Chinese))
    [17] 杨明, 刘巨保, 岳欠杯, 等. 基于浸入边界-有限元法的流固耦合碰撞数值模拟方法[J]. 应用数学和力学, 2019,40(8): 880-892.(YANG Ming, LIU Jubao, YUE Qianbei, et al. Numerical simulation of fluid-solid coupling collision based on the finite element immersed boundary method[J]. Applied Mathematics and Mechanics, 2019,40(8): 880-892.(in Chinese))
  • 加载中
计量
  • 文章访问数:  1107
  • HTML全文浏览量:  241
  • PDF下载量:  264
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-10
  • 修回日期:  2019-12-12
  • 刊出日期:  2020-09-01

目录

    /

    返回文章
    返回