留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

事件触发驱动的非线性系统有限时间状态估计器设计

佟英浩 童东兵 陈巧玉 周武能

佟英浩, 童东兵, 陈巧玉, 周武能. 事件触发驱动的非线性系统有限时间状态估计器设计[J]. 应用数学和力学, 2020, 41(6): 669-678. doi: 10.21656/1000-0887.400210
引用本文: 佟英浩, 童东兵, 陈巧玉, 周武能. 事件触发驱动的非线性系统有限时间状态估计器设计[J]. 应用数学和力学, 2020, 41(6): 669-678. doi: 10.21656/1000-0887.400210
TONG Yinghao, TONG Dongbing, CHEN Qiaoyu, ZHOU Wuneng. Design of a Finite-Time State Estimator for Nonlinear Systems Under Event-Triggered Control[J]. Applied Mathematics and Mechanics, 2020, 41(6): 669-678. doi: 10.21656/1000-0887.400210
Citation: TONG Yinghao, TONG Dongbing, CHEN Qiaoyu, ZHOU Wuneng. Design of a Finite-Time State Estimator for Nonlinear Systems Under Event-Triggered Control[J]. Applied Mathematics and Mechanics, 2020, 41(6): 669-678. doi: 10.21656/1000-0887.400210

事件触发驱动的非线性系统有限时间状态估计器设计

doi: 10.21656/1000-0887.400210
基金项目: 国家自然科学基金(61673257;11501367);中国博士后科学基金(2019M661322)
详细信息
    作者简介:

    佟英浩(1996—), 男, 硕士生(E-mail: 18341316400@163.com);童东兵(1979—), 男, 副教授, 博士(通讯作者. E-mail: tongdongbing@163.com).

  • 中图分类号: O175.13

Design of a Finite-Time State Estimator for Nonlinear Systems Under Event-Triggered Control

Funds: The National Natural Science Foundation of China(61673257;11501367); China Postdoctoral Science Foundation(2019M661322)
  • 摘要: 主要研究了带有时滞的非线性系统基于事件触发的状态估计器.首先,利用事件触发机制建立系统中的状态估计器,并用Lyapunov函数使系统在有限时间内均方有界.其次,基于H有界条件,得到了有限时间内系统H有界准则.最后,通过一个数值例子说明了所得结果的有效性.
  • [1] IBRIR S, SU C Y. Simultaneous state and dead-zone parameter estimation for a class of bounded-state nonlinear systems[J]. IEEE Transactions on Control Systems Technology,2011,19(4): 911-919.
    [2] ZHAO J B, ZHANG G X, DONG Z Y, et al. Forecasting-aided imperfect false data injection attacks against power system nonlinear state estimation[J].IEEE Transactions on Smart Grid,2016,7(1): 6-8.
    [3] PANKOV A, BOSOV A. Conditionally minimax algorithm for nonlinear system state estimation[J]. IEEE Transactions on Automatic Control,1994,39(8): 1617-1620.
    [4] ZHENG W, WU W, GOMEZ-EXPOSITO A, et al. Distributed robust bilinear state estimation for power systems with nonlinear measurements[J]. IEEE Transactions on Power Systems,2017,32(1): 499-509.
    [5] 曾德强, 吴开腾, 宋乾坤, 等. 时滞神经网络随机抽样控制的状态估计[J]. 应用数学和力学, 2018,39(7): 821-832.(ZENG Deqiang, WU Kaiteng, SONG Qiankun, et al. State estimation for delayed neural networks with stochastic sampled-data control[J]. Applied Mathematics and Mechanics,2018,39(7): 821-832.(in Chinese))
    [6] LEUNG H, SHANMUGAM S, XIE N, et al. An ergodic approach for chaotic signal estimation at low SNR with application to ultra-wide-band communication[J]. IEEE Transactions on Signal Processing,2006,54(3): 1091-1103.
    [7] BOLZERN P, COLANERI P, NICOLAO D G. On almost sure stability of continuous-time Markov jump linear systems[J]. Automatica,2006,42(6): 983-988.
    [8] ZHAO X Y, DENG F Q. Moment stability of nonlinear discrete stochastic systems with time-delays based on H -representation technique[J]. Automatica,2014,50(2): 530-536.
    [9] WANG Y Y, XIE L H, DE SOUZA C E. Robust control of a class of uncertain nonlinear systems[J]. Systems and Control Letters,1992,19(2): 139-149.
    [10] WANG D, LIU D R, LI H L, et al. An approximate optimal control approach for robust stabilization of a class of discrete-time nonlinear systems with uncertainties[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems,2015,46(5): 713-717.
    [11] KE M, ZHAO Y D, ZHAO X. Cooperation-driven distributed model predictive control for energy storage systems[J]. IEEE Transactions on Smart Grid,2015,6(6): 2583-2585.
    [12] PUKDEBOON C, ZINOBER A S, THEIN M W L. Quasi-continuous higher order sliding-mode controllers for spacecraft-attitude-tracking maneuvers[J]. IEEE Transactions on Industrial Electronics,2010,57(4): 1436-1444.
    [13] AMATO F, ARIOLA M, DORATO P. Finite-time control of linear systems subject to parametric uncertainties and disturbances[J]. Automatica,2001,37(9): 1459-1463.
    [14] MAO Y, ZHANG H, ZHANG Z. Finite-time stabilization of discrete-time switched nonlinear systems without stable subsystems via optimal switching signal design[J]. IEEE Transactions on Fuzzy Systems,2017,25(1): 172-180.
    [15] 程桂芳, 慕小武. 一类不连续系统关于闭不变集的有限时间稳定性研究[J]. 应用数学和力学, 2009,30(8): 1003-1008.(CHENG Guifang, MU Xiaowu. Finite-time stability with respect to a closed invariant set for a class of discontinuous systems[J]. Applied Mathematics and Mechanics,2009,30(8): 1003-1008.(in Chinese))
    [16] WANG J, ZHANG H, WANG Z, et al. Finite-time synchronization of coupled hierarchical hybrid neural networks with time-varying delays[J].IEEE Transactions on Cybernetics,2017,47(10): 2995-3004.
  • 加载中
计量
  • 文章访问数:  1207
  • HTML全文浏览量:  200
  • PDF下载量:  318
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-15
  • 修回日期:  2020-05-10
  • 刊出日期:  2020-06-01

目录

    /

    返回文章
    返回