[1] |
NO L J P, KERSCHEN G. Nonlinear system identification in structural dynamics: 10 more years of progress[J].Mechanical Systems and Signal Processing,2017,〖STHZ〗 83: 2-35.
|
[2] |
芦泽阳, 李树江, 王向东. 采用RBF网络的喷雾机喷杆自适应动态面跟踪控制[J]. 应用数学和力学, 2019,40(7): 801-809.(LU Zeyang, LI Shujiang, WANG Xiangdong. Adaptive RBF-network dynamic surface tracking control of sprayer boom systems[J]. Applied Mathematics and Mechanics,2019,40(7): 801-809.(in Chinese))
|
[3] |
SUTRISNO I, JAMI’IN M A, HU J, et al. A self-organizing quasi-linear ARX RBFN model for nonlinear dynamical systems identification[J]. SICE Journal of Control, Measurement, and System Integration,2016,9(2): 70-77.
|
[4] |
LJUNG L. System Identification: Theory for the User [M]. 2nd ed. Englewood Cliffs, NJ: Prentice-Hall, 1999.
|
[5] |
HU J, KUMAMARU K, HIRASAWA K. A quasi-ARMAX approach to modelling of non-linear systems[J]. International Journal of Control,2001,74(18): 1754-1766.
|
[6] |
NARENDRA K S, PARTHASARATHY K. Identification and control of dynamical systems using neural networks[J]. IEEE Transactions on Neural Networks,1990,1(1): 4-27.
|
[7] |
YOUNG P C, MCKENNA P, BRUUN J. Identification of non-linear stochastic systems by state dependent parameter estimation[J]. International Journal of Control,2001,74(18): 1837-1857.
|
[8] |
WANG L, CHENG Y, HU J L. Stabilizing switching control for nonlinear system based on quasi-ARX RBFN model[J]. IEEJ Transactions on Electrical and Electronic Engineering,2012,7(4): 390-396.
|
[9] |
JANOT A, YOUNG P C, GAUTIER M. Identification and control of electro-mechanical systems using state-dependent parameter estimation[J]. International Journal of Control,2017,〖STHZ〗 90(4): 643-660.
|
[10] |
XU W, PENG H, ZENG X, et al. Deep belief network-based AR model for nonlinear time series forecasting[J]. Applied Soft Computing,2019,77: 605-621.
|
[11] |
HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science,2006,313(5786): 504-507.
|
[12] |
WANG L, CHENG Y, HU J, et al. Nonlinear system identification using quasi-ARX RBFN models with a parameter-classified scheme[J]. Complexity,2017,2017: 1-12.
|
[13] |
SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research,2014,15(1): 1929-1958.
|
[14] |
KUREMOTO T, KIMURA S, KOBAYASHI K, et al. Time series forecasting using a deep belief network with restricted Boltzmann machines[J]. Neurocomputing,2014,137: 47-56.
|
[15] |
SCHMIDHUBER J. Deep learning in neural networks: an overview[J]. Neural Networks,2015,61: 85-117.
|
[16] |
LI D, KANG T, HU J, et al. Quasi-linear recurrent neural network based identification and predictive control[C]//2018 International Joint Conference on Neural Networks (IJCNN) . 2018: 1-6.
|
[17] |
HU J, HIRASAWA K, KUMAMARU K. Adaptive predictor for control of nonlinear systems based on neurofuzzy models[C]//1999 European Control Conference (ECC) . Karlsruhe, Germany, 1999.
|