留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类具有非线性脉冲的捕食与被捕食系统的定性分析

李畅通

李畅通. 一类具有非线性脉冲的捕食与被捕食系统的定性分析[J]. 应用数学和力学, 2020, 41(5): 568-580. doi: 10.21656/1000-0887.400226
引用本文: 李畅通. 一类具有非线性脉冲的捕食与被捕食系统的定性分析[J]. 应用数学和力学, 2020, 41(5): 568-580. doi: 10.21656/1000-0887.400226
LI Changtong. Analysis of the Predator-Prey Model With Nonlinear Impulsive Control[J]. Applied Mathematics and Mechanics, 2020, 41(5): 568-580. doi: 10.21656/1000-0887.400226
Citation: LI Changtong. Analysis of the Predator-Prey Model With Nonlinear Impulsive Control[J]. Applied Mathematics and Mechanics, 2020, 41(5): 568-580. doi: 10.21656/1000-0887.400226

一类具有非线性脉冲的捕食与被捕食系统的定性分析

doi: 10.21656/1000-0887.400226
基金项目: 国家自然科学基金(61772017)
详细信息
    作者简介:

    李畅通(1982—), 男, 博士生(E-mail: lctnihao@snnu.edu.cn).

  • 中图分类号: Q241.8|O242

Analysis of the Predator-Prey Model With Nonlinear Impulsive Control

Funds: The National Natural Science Foundation of China(61772017)
  • 摘要: 实际的害虫控制策略由于受到资源有限、种群密度的影响,具有饱和效应或非线性特征.因此,该文对一类具有非线性脉冲控制策略的捕食与被捕食模型进行了全局定性分析.利用脉冲微分方程中的Floquet 理论和比较方法,得到模型的天敌根除周期解全局渐近稳定的充分条件,通过分支理论,得到非平凡周期解存在性的条件,数值模拟验证了具有非线性脉冲的模型具有非常复杂的动态行为.
  • [1] VAN LENTEREN J C. Integrated pest management in protected crops[M]// Integrated Pest Management . DENT D, ed. London: Chapman & Hall, 1995.
    [2] LIU B, ZHANG Y J, CHEN L S. The dynamical behaviors of a Lotka-Volterra predator-prey model concerning integrated pest management[J]. Nonlinear Analysis Real World Applications,2005,6(2): 227-243.
    [3] TANG S Y, CHEN L S. Density-dependent birth rate, birth pulses and their population dynamic consequences[J]. Journal of Mathematical Biology,2002,44(2): 185-199.
    [4] TANG S Y, CHEN L S. Multiple attractors in stage-structured population models with birth pulses[J]. Bulletin of Mathematical Biology,2003,65(3): 479-495.
    [5] TANG S Y, CHEN L S. The effect of seasonal harvesting on stage-structured populations models[J]. Journal of Mathematical Biology,2004,48(4): 357-374.
    [6] TANG S Y, XIAO Y N, CHEN L S, et al. Integrated pest management models and their dynamical behavior[J]. Bulletin of Mathematical Biology,2005,67(1): 115-121.
    [7] GAO W, TANG S Y. The effects of impulsive releasing methods of natural enemies on pest control and dynamical complexity[J]. Nonlinear Analysis: Hybrid Systems,2011,5(3): 540-553.
    [8] LI C T, TANG S Y. The effects of timing of pulse spraying and releasing periods on dynamics of generalized predator-prey model[J]. International Journal of Biomathematics,2012,5(1): 1-27.
    [9] TANG S Y, LIANG J H. Global qualitative analysis of a non-smooth Gause predator-prey model with a refuge[J]. Nonlinear Analysis,2013,76(1): 165-180.
    [10] BAEK H K. Qualitative analysis of Beddington-DeAngelis type impulsive predator-prey models[J]. Nonlinear Analysis: Real World Applications,2010,11: 1312-1322.
    [11] 王小娥, 蔺小林, 李建全. 一类具有脉冲免疫治疗的HIV-1感染模型的动力学分析[J]. 应用数学和力学, 2019,40(7): 728-740.(WANG Xiaoe, LIN Xiaolin, LI Jianquan. Dynamic analysis of a class of HIV-1 infection models with pulsed immunotherapy[J]. Applied Mathematics and Mechanics,2019,40(7): 728-740.(in Chinese))
    [12] 王刚, 唐三一. 非线性脉冲状态依赖捕食被捕食模型的定性分析[J]. 应用数学和力学, 2013,34(5): 496-505.(WANG Gang, TANG Sanyi. Qualitative analysis of prey-predator model with nonlinear impulsive effects[J]. Applied Mathematics and Mechanics,2013,34(5): 496-505.(in Chinese))
    [13] YANG J, TANG G Y, TANG S Y. Holling type Ⅱ predator-prey model with nonlinear pulse as state-dependent feedback control[J]. Journal of Computational and Applied Mathematics,2016,291(1): 225-241.
    [14] TIAN Y, TANG S Y, CHEKE R A. Dynamic complexity of a predator-prey model for IPM with nonlinear impulsive control incorporating a regulatory factor for predator releases[J]. Mathematical Modelling and Analysis,2019,24(1): 134-154.
    [15] LI C T, TANG S Y. Analyzing a generalized pest-natural enemy model with nonlinear impulsive control[J]. Open Mathematics,2018,16(1): 1390-1411.
    [16] LAKMECHE A, ARINO O. Bifurcation of non-trivial periodic solutions of impulsive differential equations arising chemotherapeutic treatment[J]. Dynamics of Continuous, Discrete and Impulsive Systems(Series A): Mathematical Analysis,2000,7(2): 265-287.
  • 加载中
计量
  • 文章访问数:  1533
  • HTML全文浏览量:  309
  • PDF下载量:  308
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-23
  • 修回日期:  2019-08-29
  • 刊出日期:  2020-05-01

目录

    /

    返回文章
    返回