留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Riemann流形上ρ-(η,d)-B不变凸的向量变分不等式及向量优化问题

刘爽 莫定勇 周志昂

刘爽, 莫定勇, 周志昂. Riemann流形上ρ-(η,d)-B不变凸的向量变分不等式及向量优化问题[J]. 应用数学和力学, 2020, 41(4): 458-466. doi: 10.21656/1000-0887.400227
引用本文: 刘爽, 莫定勇, 周志昂. Riemann流形上ρ-(η,d)-B不变凸的向量变分不等式及向量优化问题[J]. 应用数学和力学, 2020, 41(4): 458-466. doi: 10.21656/1000-0887.400227
LIU Shuang, MO Dingyong, ZHOU Zhiang. Vector Variational-Like Inequalities and Vector Optimization Problems Involving ρ-(η,d)-B Invexity on Riemannian Manifolds[J]. Applied Mathematics and Mechanics, 2020, 41(4): 458-466. doi: 10.21656/1000-0887.400227
Citation: LIU Shuang, MO Dingyong, ZHOU Zhiang. Vector Variational-Like Inequalities and Vector Optimization Problems Involving ρ-(η,d)-B Invexity on Riemannian Manifolds[J]. Applied Mathematics and Mechanics, 2020, 41(4): 458-466. doi: 10.21656/1000-0887.400227

Riemann流形上ρ-(η,d)-B不变凸的向量变分不等式及向量优化问题

doi: 10.21656/1000-0887.400227
基金项目: 国家自然科学基金(11861002);重庆市基础与前沿研究计划项目(cstc2017jcyjBX0055;cstc2015jcyjBX0113)
详细信息
    作者简介:

    刘爽(1994—), 女, 硕士生(E-mail: liushuang_0818@163.com);周志昂(1972—), 男, 教授, 博士(通讯作者. E-mail: zhi_ang@163.com).

  • 中图分类号: O221.6

Vector Variational-Like Inequalities and Vector Optimization Problems Involving ρ-(η,d)-B Invexity on Riemannian Manifolds

Funds: The National Natural Science Foundation of China(11861002)
  • 摘要: 该文研究了Riemann流形上的优化问题.首先,利用广义方向导数在Riemann流形上引入ρ-(η,d)-B不变凸函数、ρ-(η,d)-B伪不变凸函数和ρ-(η,d)-B拟不变凸函数.其次,讨论了变分不等式的解与Riemann流形上向量优化问题解之间的关系.最后,建立了优化问题的Kuhn-Tucker充分条件.
  • [1] HANSON M A. On sufficiency of the Kuhn-Tucker conditions[J]. Journal of Mathematical Analysis and Applications,1981,80(2): 545-550.
    [2] GULATI T R, ISLAM M A. Sufficiency and duality in multiobjective programming involving generalized F -convex functions[J]. Journal of Mathematical Analysis and Applications,1994,183(1): 181-195.
    [3] CROUZEIX J P, LEGAZ J E M, VOLLE M. Generalized Convexity, Generalized Monotonicity: Recent Results [M]. Springer Science and Business Media, 2013.
    [4] CAMBINI A, MARTEIN L. Generalized Convexity and Optimization: Theory and Applications [M]. Springer Science and Business Media, 2008.
    [5] GUDDER S, SCHROECK F. Generalized convexity[J]. SIAM Journal on Mathematical Analysis,2012,11(6): 984-1001.
    [6] 陈望, 周志昂. 基于改进集的带约束集值向量均衡问题的最优性条件[J]. 应用数学和力学, 2018,39(10): 1189-1197.(CHEN Wang, ZHOU Zhiang. Optimality conditions for set-valued vector equilibrium problems with constraints involving improvement sets[J]. Applied Mathematics and Mechanics,2018,39(10): 1189-1197.(in Chinese))
    [7] 黄应全. 关于向量值 D -半预不变真拟凸映射的刻画[J]. 应用数学和力学, 2018,〖STHZ〗 39(3): 364-370.(HUANG Yingquan. Characterizations of D-properly semi-prequasi-invex mappings[J]. Applied Mathematics and Mechanics,2018,39(3): 364-370.(in Chinese))
    [8] 杨玉红, 李飞. 非光滑半无限多目标优化问题的最优性充分条件[J]. 应用数学和力学, 2017,38(5): 526-538.(YANG Yuhong, LI Fei. Sufficient optimality conditions for nonsmooth semi-infinite multiobjective optimization problems[J]. Applied Mathematics and Mechanics,2017,38(5): 526-538.(in Chinese))
    [9] RAPCSAK T. Smooth Nonlinear Optimization in Rn[M]. USA: Springer, 1997.
    [10] PINI R. Convexity along curves and indunvexity[J]. Optimization,1994,29(4): 301-309.
    [11] MITITELU S. Generalized invexity and vector optimization on differentiable manifolds[J]. Differential Geometry: Dynamical Systems,2001,3(1): 21-31.
    [12] BARANI A, POURYAYEVALI M R. Invex sets and preinvex functions on Riemannian manifolds[J]. Journal of Mathematical Analysis and Applications,2007,〖STHZ〗 328(2): 767-779.
    [13] AGARWAL R P, AHMAD I, IQBAL A, et al. Generalized invex sets and preinvex functions on Riemannian manifolds[J]. Taiwanese Journal of Mathematics,2012,16(5): 1719-1732.
    [14] CHEN S L, HUANG N J, O’REGAN D. Geodesic B -preinvex functions and multiobjective optimization problems on Riemannian manifolds[J]. Journal of Applied Mathematics,2014,2014: 1-12.
    [15] MISHRA S K, WANG S Y. Vector variational-like inequalities and non-smooth vector optimization problems[J]. Nonlinear Analysis: Theory, Methods & Applications,2006,64(9): 1939-1945.
    [16] 肖刚, 肖红, 刘三阳. 黎曼流形上的向量似变分不等式与向量优化问题[J]. 安徽大学学报(自然科学版), 2009,33(3): 5-8.(XIAO Gang, XIAO Hong, LIU Sanyang. Vector variational-like inequalities and vector optimization problems on Riemannian manifolds[J]. Journal of Anhui University(Natural Science Edition),2009,33(3): 5-8.(in Chinese))
    [17] 陈胜兰, 方长杰. 黎曼流形上的广义向量似变分不等式和向量优化问题[J]. 四川师范大学学报(自然科学版), 2016,39(3): 332-336.(CHEN Shenglan, FANG Changjie. Generalized vector variational-like inequality and vector optimization problem on Riemannian manifolds[J]. Journal of Sichuan Normal University(Natural Science),2016,39(3): 332-336.(in Chinese))
    [18] LI C, MORDUKHOVICH B S, WANG J H, et al. Weak sharp minima on Riemannian manifolds[J]. SIAM Journal on Optimization,2011,21(4): 1523-1560.
    [19] 肖刚, 刘三阳. 黎曼流形上非可微多目标规划的必要最优性条件[J]. 吉林大学学报(理学版), 2008,〖STHZ〗 46(2): 209-213.(XIAO Gang, LIU Sanyang. Necessary optimality conditions of nondifferentiable-multiobjective programming on Riemannian manifolds[J]. Journal of Jilin University(Science Edition),2008,46(2): 209-213.(in Chinese))
    [20] AZAGRA D, FERRERA J, LOPEZMESAS F. Nonsmooth analysis and Hamilton-Jacobi equations on Riemannian manifolds[J]. Journal of Functional Analysis,2003,220(2): 304-361.
  • 加载中
计量
  • 文章访问数:  1889
  • HTML全文浏览量:  328
  • PDF下载量:  311
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-27
  • 修回日期:  2019-11-19
  • 刊出日期:  2020-04-01

目录

    /

    返回文章
    返回