留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

罐车防晃结构SPH模拟研究

黄志涛 杨瑜 邵家儒 张月月

黄志涛, 杨瑜, 邵家儒, 张月月. 罐车防晃结构SPH模拟研究[J]. 应用数学和力学, 2020, 41(7): 760-770. doi: 10.21656/1000-0887.400234
引用本文: 黄志涛, 杨瑜, 邵家儒, 张月月. 罐车防晃结构SPH模拟研究[J]. 应用数学和力学, 2020, 41(7): 760-770. doi: 10.21656/1000-0887.400234
HUANG Zhitao, YANG Yu, SHAO Jiaru, ZHANG Yueyue. Numerical Simulation of SloshingMitigating Structures in Tank Trucks With the SPH Method[J]. Applied Mathematics and Mechanics, 2020, 41(7): 760-770. doi: 10.21656/1000-0887.400234
Citation: HUANG Zhitao, YANG Yu, SHAO Jiaru, ZHANG Yueyue. Numerical Simulation of SloshingMitigating Structures in Tank Trucks With the SPH Method[J]. Applied Mathematics and Mechanics, 2020, 41(7): 760-770. doi: 10.21656/1000-0887.400234

罐车防晃结构SPH模拟研究

doi: 10.21656/1000-0887.400234
基金项目: 国家自然科学基金(11602045); 重庆市技术创新与应用发展重大主题专项(cstc2019jscx-zdztzxX0028;cstc2019jscx-zdztzxX0020)
详细信息
    作者简介:

    黄志涛(1993—),男,硕士生(E-mail: 1304779121@qq.com);邵家儒(1986—),男,副教授,博士(通讯作者. E-mail: shaojiaru@cqut.edu.cn).

  • 中图分类号: TH113.2

Numerical Simulation of SloshingMitigating Structures in Tank Trucks With the SPH Method

Funds: The National Natural Science Foundation of China(11602045)
  • 摘要: 基于光滑粒子动力学(SPH)方法对罐车的行驶稳定性、晃荡抑制措施进行了研究.首先模拟了矩形容器内的液体晃荡问题,仿真结果与试验结果吻合良好,表明SPH模型可以准确预测自由液面及容器壁面上的压力变化.之后,建立了二维椭圆形截面罐车模型,分析了装载93#汽油的罐车在水平正弦激励或横摇激励作用下,罐车壁面冲击压力和液体质心轨迹的变化情况.结果表明,无防晃结构时,车内液体晃动剧烈,结构的防晃效果会受外界激励形式的影响.防晃结构的法线方向与来流方向的夹角越小,则晃荡抑制效果越明显,重心越稳定.
  • [1] 张海涛, 孙蓓蓓, 陈建栋. 基于自由液面预测的非线性液体晃动问题的数值模拟[J]. 东南大学学报(自然科学版), 2014,44(2): 277-282.(ZHANG Haitao, SUN Beibei, CHEN Jiandong. Numerical simulation of nonlinear liquid sloshing problems based on forecast of free surface[J]. Journal of Southeast University(Natural Science Edition),2014,44(2): 277-282.(in Chinese))
    [2] 赵树恩, 赵灵鹤. 汽车罐车横向运动液体晃动动力学特性模拟[J]. 应用数学和力学, 2014,35(11): 1259-1270.(ZHAO Shuen, ZHAO Linghe. Dynamic simulation of liquid sloshing characteristics for tank trucks in lateral movement[J]. Applied Mathematics and Mechanics,2014,35(11): 1259-1270.(in Chinese))
    [3] FRANDSEN J B. Sloshing Motions in Excited Tanks [M]. Academic Press Professional, Inc, 2004.
    [4] SOULI M, ZOLESIO J P. Arbitrary Lagrangian-Eulerian and free surface methods in fluid mechanics[J]. Computer Methods in Applied Mechanics and Engineering,2001,191(3/5): 451-466.
    [5] LUCY L B. A numerical approach to the testing of the fission hypothesis[J]. The Astronomy Journal,1977,82(12): 1013-1024.
    [6] 〖JP2〗KOSHIZUKA S, OKA Y. Moving-particle semi-implicit method for fragmentation of incompressible fluid[J]. Nuclear Science and Engineering: the Journal of the American Nuclear Society,1996,123(3): 421-434.
    [7] 龚国毅. 基于VOF和浸入边界法的液舱晃荡的数值模拟[D]. 硕士学位论文. 广州: 华南理工大学,2013.(GONG Guoyi. Numerical simulation of tank sloshing based on volume of fluid and immersed boundary method[D]. Master Thesis. Guangzhou: South China University of Technology, 2013.(in Chinese))
    [8] 陈剑. 道路激励下罐式汽车液固耦合动力学性能研究[D]. 硕士学位论文. 南京: 东南大学, 2012.(CHEN Jian. The dynamics of liquid-structure interaction for tank vehicle subjected to road excitation[D]. Master Thesis. Nanjing: Southeast University, 2012.(in Chinese))
    [9] 张凯凯. 基于SPH方法的液舱内液体晃动分析及防晃研究[D]. 硕士学位论文. 哈尔滨: 哈尔滨工业大学, 2016.(ZHANG Kaikai. Analysis and research of the liquid sloshing and sloshing suppression in tanks based on SPH method[D]. Master Thesis. Harbin: Harbin Institute of Technology, 2016.(in Chinese))
    [10] LIU G R, LIU M B. 光滑粒子流体动力学: 一种无网格粒子法[M]. 韩旭, 杨刚, 强洪夫, 译. 长沙: 湖南大学出版社, 2005.(LIU G R, LIU M B. Smooth Particle Hydrodynamics: a Meshless Particle Method [M]. HAN Xu, YANG Gang, QIANG Hongfu, transl. Changsha: Hunan University Press, 2005.(Chinese version))
    [11] SHAO J R, LI H Q, LIU G R, et al. An improved SPH method for modeling liquid sloshing dynamics[J]. Computers & Structures, 2012,100/101: 18-26.
    [12] 刘谋斌, 周冉, 邵家儒. 棱形液舱内液体晃荡问题的SPH数值模拟[J]. 河海大学学报(自然科学版), 2014,42(3): 257-261.(LIU Moubin, ZHOU Ran, SHAO Jiaru. Numerical simulation of liquid sloshing in a prismatic tank with SPH method[J]. Journal of Hohai University (Natural Sciences),2014,42(3): 257-261.(in Chinese))
    [13] TOUMI M, BOUAZARA M, RICHARD M J. Impact of liquid sloshing on the behaviour of vehicles carrying liquid cargo[J]. European Journal of Mechanics A: Solids,2009,28(5): 1026-1034.
    [14] 庄园, 万德成. FPSO船与低充水率下LNG液舱晃荡耦合运动的数值模拟[J]. 应用数学和力学, 2016,37(12): 1378-1393.(ZHUANG Yuan, WAN Decheng. Numerical study on coupling effects of FPSO ship motion and lng tank sloshing in low-filling conditions[J]. Applied Mathematics and Mechanics,2016,〖STHZ〗 37(12): 1378-1393.(in English))
    [15] 张友林, 陈翔, 万德成. 基于MPS-FEM耦合方法对比研究刚性与弹性挡板对液舱晃荡的抑制作用[J]. 应用数学和力学, 2016,37(12): 1359-1377.(ZHANG Youlin, CHEN Xiang, WAN Decheng. An MPS-FEM coupled method for the comparative study of liquid sloshing flows interacting with rigid and elastic baffles[J]. Applied Mathematics and Mechanics,2016,37(12): 1359-1377.(in English))
    [16] LIU M B, SHAO J R, CHANG J Z. On the treatment of solid boundary in smoothed particle hydrodynamics[J]. Science China Technological Sciences,2012,55(1): 244-254.
    [17] KISHEV Z R, HU C, KASHIWAGI M. Numerical simulation of violent sloshing by a CIP-based method[J]. Journal of Marine Science and Technology,2006,11: 111-122.
  • 加载中
计量
  • 文章访问数:  1240
  • HTML全文浏览量:  261
  • PDF下载量:  304
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-03
  • 修回日期:  2020-06-15
  • 刊出日期:  2020-07-01

目录

    /

    返回文章
    返回