[1] |
HUANG G, ZHU Q, SIEW C. Extreme learning machine: a new learning scheme of feedforward neural networks[C]// 2004 IEEE International Joint Conference on Neural Networks . Budapest, Hungary, 2004: 985-990.
|
[2] |
HUANG G, ZHU Q, SIEW C. Extreme learning machine: theory and applications[J]. Neurocomputing,2006,70(1/3): 489-501.
|
[3] |
HUANG G, ZHOU H, DING X, et al. Extreme learning machine for regression and multiclass classification[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),2012,42(2): 513-529.
|
[4] |
姜琳颖, 余东海, 石鑫. 基于加权极限学习机的肿瘤基因表达谱数据分类[J]. 东北大学学报(自然科学版), 2017,38(6): 798-803.(JIANG Linying, YU Donghai, SHI Xin. Tumor microarray gene expression data classification based on weighted extreme learning machine[J]. Journal of Northeastern University (Natural Science),2017,38(6): 798-803.(in Chinese))
|
[5] |
柯逍, 邹嘉伟, 杜明智, 等. 基于蒙特卡罗数据集均衡与鲁棒性增量极限学习机的图像自动标注[J]. 电子学报, 2017,45(12): 2925-2935.(KE Xiao, ZOU Jiawei, DU Mingzhi, et al. The automatic image annotation based on monte-carlo data set balance and robustness incremental extreme learning machine[J]. Acta Electronica Sinica,2017,45(12): 2925-2935.(in Chinese))
|
[6] |
HAMPEL F, RONCHETTI E, ROUSSEEUW P, et al. Robust Statistics [M]. Wiley, 2005.
|
[7] |
FRENAY B, VERLEYSEN M. Classification in the presence of label noise: a survey[J]. IEEE Transactions on Neural Networks and Learning Systems,2014,25(5): 845-869.
|
[8] |
DENG W, ZHENG Q, CHEN L. Regularized extreme learning machine[C]// 2009 IEEE Symposium on Computational Intelligence and Data Mining . Nashville, TN, USA, 2009: 389-395.
|
[9] |
HORATA P, CHIEWCHANWATTANA S, SUNAT K. Robust extreme learning machine[J]. Neurocomputing,2013,102: 31-44.
|
[10] |
ZHANG K, LUO M. Outlier-robust extreme learning machine for regression problems[J]. Neurocomputing,2015,151(3): 1519-1527.
|
[11] |
REN Z, YANG L. Robust extreme learning machines with different loss functions[J]. Neural Processing Letters,2019,49(3): 1543-1565.
|
[12] |
CHEN K, L Q, LU Y, et al. Robust regularized extreme learning machine for regression using iteratively reweighted least squares[J]. Neurocomputing,2017,230: 345-358.
|
[13] |
WANG L, JIA H, LI J. Training robust support vector machine with smooth ramp loss in the primal space[J]. Neurocomputing,2008,71(13/15): 3020-3025.
|
[14] |
SHEN X, NIU L, QI Z, et al. Support vector machine classifier with truncated pinball loss[J]. Pattern Recognition,2017,68: 199-210.
|
[15] |
ZHONG P. Training robust support vector regression with smooth non-convex loss function[J]. Optimization Methods & Software,2012,27(6): 1039-1058.
|
[16] |
JIANG W, NIE F, HUANG H. Robust dictionary learning with capped l1 norm[C]// Twenty-Fourth International Joint Conference on Artificial Intelligence . Buenos Aires, Argentina, 2015.
|
[17] |
LIU W, POKHAREL P, PRINCIPE J. Correntropy: properties and applications in non-Gaussian signal processing[J]. IEEE Transactions on Signal Processing,2007,55(11): 5286-5298.
|
[18] |
HE R, HU B, YUAN X,et al. Robust Recognition Via Information Theoretic Learning [M]. Springer, 2014.
|
[19] |
XING H, WANG X. Training extreme learning machine via regularized correntropy criterion[J]. Neural Computing and Applications,2013,23(7/8): 1977-1986.
|
[20] |
SINGH A, POKHAREL R, PRINCIPE J. The C-loss function for pattern classification[J]. Pattern Recognition,2014,47(1): 441-453.
|
[21] |
FENG Y, YANG Y, HUANG X, et al. Robust support vector machines for classification with nonconvex and smooth losses[J]. Neural Computation,2016,28(6): 1217-1247.
|
[22] |
YANG L, REN Z, WANG Y,et al. A robust regression framework with Laplace kernel-induced loss[J]. Neural Computation,2017,29(11): 3014-3039.
|