[1] |
STRANG G. Introduction to Applied Mathematics [M]. Wellesley, MA: Wellesley-Cambridge Press, 1986.
|
[2] |
谷超豪, 李大潜, 陈恕行. 数学物理方法[M]. 上海: 上海科学技术出版社, 2002.(GU Chaohao, LI Daqian, CHEN Shuxing. Mathematical and Physical Methods [M]. Shanghai: Shanghai Scientific & Technical Publishers, 2002.(in Chinese))
|
[3] |
BOARD A. Stochastic Modelling and Applied Probability [M]. Springer, 2005.
|
[4] |
COURANT R, HILBERT D. Methods of Mathematical Physics: Partial Differential Equations [M]. John Wiley & Sons, 2008.
|
[5] |
ARNOL’D V I. Mathematical Methods of Classical Mechanics [M]. Springer Science & Business Media, 2013.
|
[6] |
NETER J, KUTNER M H, NACHTSHEIM C J, et al. Applied Linear Statistical Models [M]. Chicago, 1996.
|
[7] |
CONGDON P. Bayesian Statistical Modelling [M]. John Wiley & Sons, 2007.
|
[8] |
FAHRMEIR L, TUTZ G. Multivariate Statistical Modelling Based on Generalized Linearmodels [M]. Springer Science & Business Media, 2013.
|
[9] |
GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]// Advances in Neural Information Processing Systems 〖STBX〗27 (NIPS 2014).Montreal, Canada, 2014.
|
[10] |
KINGMA D P, WELLING M. Auto-encoding variational Bayes[R/OL]. [2019-08-26]. https://arxiv.org/pdf/1511.06434.pdf.
|
[11] |
RADFORD A, METZ L, CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks[R/OL]. [2019-08-26]. https://arxiv.org/pdf/1312.6114.pdf.
|
[12] |
CHEN X, DUAN Y, HOUTHOOFT R, et al. Infogan: interpretable representation learning by information maximizing generative adversarial nets[R/OL]. [2019-08-26]. https://arxiv.org/pdf/1606.03657.pdf.
|
[13] |
ZHANG Han, XU Tao, LI Hongsheng, et al. Stackgan: text to photo-realistic image synthesis with stacked generative adversarial networks[R/OL]. [2019-08-26]. https://arxiv.org/pdf/1612.03242v1.pdf.
|
[14] |
MAO X D, LI Q, XIE H R, et al. Least squares generative adversarial networks[C]//2017 IEEE International Conference on Computer Vision (ICCV).2017.
|
[15] |
ISOLA P, ZHU J Y, ZHOU T H, et al. Image-to-image translation with conditional adversarial networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).2017: 1125-1134.
|
[16] |
ARJOVSKY M, CHINTALA S, BOTTOU L. Wasserstein GAN[R/OL]. [2019-08-26]. https://arxiv.org/pdf/1701.07875.pdf.
|
[17] |
ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//2017 IEEE International Conference on Computer Vision (ICCV).Venice, Italy, 2017.
|
[18] |
KARRAS T, LAINE S, AILA T. A style-based generator architecture for generative adversarial networks[C]//2019 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).2019: 4401-4410.
|
[19] |
TAO C Y, CHEN L Q, HENAO R, et al. Chi-square generative adversarial network[C]// International Conference on Machine Learning.2018: 4894-4903.
|
[20] |
SNDERBY C K, RAIKO T, MAALE L, et al. Ladder variational autoencoders[C]// Advances in Neural Information Processing Systems 29 (NIPS 2016).2016: 3738-3746.
|
[21] |
HIGGINS I, MATTHEY L, GLOROT X, et al. Early visual concept learning with unsupervised deep learning[R/OL]. [2019-08-26]. https://arxiv.org/pdf/1606.05579.pdf.
|
[22] |
RUBIN D B. Bayesianly justifiable and relevant frequency calculations for the applies statistician[J]. The Annals of Statistics,1984,12(4): 1151-1172.
|
[23] |
PRITCHARD J K, SEIELSTAD M T, PEREZ-LEZAUN A, et al. Population growth of human Y chromosomes: a study of Y chromosome microsatellites[J]. Molecular Biology & Evolution,1999,16(12): 1791-1798.
|
[24] |
WILKINSON R D,TAVARB S. Estimating primate divergence times by using conditioned birth-and-death processes[J]. Theoretical Population Biology,2009,75(4): 278-285.
|
[25] |
PETERS G W, SISSON S A, FAN Y. Likelihood-free Bayesian inference for Alpha-stable models[J]. Computational Statistics & Data Analysis,2012,56(11): 3743-3756.
|
[26] |
NOTT D J, FAN Y, MARSHALL L, et al. Approximate Bayesian computation and Bayes’ linear analysis: toward high-dimensional ABC[J]. Journal of Computational and Graphical Statistics,2014,23(1): 65-86.
|
[27] |
RATMANN O, ANDRIEU C, WIUF C,et al. Model criticism based on likelihood-free inference, with an application to protein network evolution[J]. Proceedings of the National Academy of Sciences of the United States of America,2009,106(26): 10576-10581.
|
[28] |
KULKARNI T, YILDIRIM I, KOHLI P,et al. Deep generative vision as approximate Bayesian computation[C]// NIPS 2014 ABC Workshop.2014.
|
[29] |
SHEEHAN S, SONG Y S. Deep learning for population genetic inference[J]. PLoS Computational Biology,2016,12(3): e1004845. DOI: 10.1371/journal.pcbi.1004845.
|
[30] |
GAL Y, GHAHRAMANI Z B. Dropout as a Bayesian approximation: representing model uncertainty in deep learning[C]// Proceedings of the 〖STBX〗33rd International Conference on Machine Learning.New York, USA, 2016: 1050-1059.
|
[31] |
FELIP J, AHUJA N, GOMEZ-GUTIERREZ D, et al. Real-time approximate Bayesian computation for scene understanding[R/OL]. [2019-08-26]. https://arxiv.org/pdf/1905.13307.pdf.
|
[32] |
GHOSH J K, RAMAMOORTHI R V. Bayesian Nonparametrics [M]. New York: Springer, 2003.
|
[33] |
ROBERT C. The Bayesian Choice: From Decision-Theoretic Foundations to Computational Implementation [M]. Springer Science, 2007.
|
[34] |
BERNARDO J M, SMITH A F M. Bayesian Theory [M]. John Wiley & Sons, 2009.
|
[35] |
GELMAN A, CARLIN J B, STERN H S, et al. Bayesian Data Analysis [M]. 3rd ed. Chapman and Hall/CRC, 2013.
|
[36] |
LIU J S. Monte Carlo Strategies in Scientific Computing [M]. New York: Springer, 2001.
|
[37] |
BROOKS S, GELMAN A, JONES G, et al. Handbook of Markov Chain Monte Carlo [M]. New York: CRC press, 2011.
|
[38] |
CHEN M H, SHAO Q M, IBRAHIM J G. Monte Carlo Methods in Bayesian Computation [M]. Springer Science & Business Media, 2012.
|
[39] |
GIUDICI P, GIVENS G H, MALLICK B K. Wiley Series in Computational Statistics [M]. Wiley Online Library, 2013.
|
[40] |
MARJORAM P, MOLITOR J, PLAGNOL V, et al. Markov chain Monte Carlo without likelihoods[J]. Proceedings of the National Academy of Sciences of the United States of America,2003,100(26): 15324-15328.
|
[41] |
SISSON S A, FAN Y, TANAKA M M. Sequential monte carlo without likelihoods[J]. Proceedings of the National Academy of Sciences of the United States of America,2007,104(6): 1760-1765.
|
[42] |
FEARNHEAD P, PRANGLE D.Constructing summary statistics for approximate Bayesian computation: semi-automatic approximate Bayesian computation[J]. Journal of the Royal Statistical Society: Series B (Statistical Methodology),2012,74(3): 419-474.
|
[43] |
DELMORAL P, DOUCET A, JASRA A. An adaptive sequential Monte Carlo method for approximate Bayesian computation[J]. Statistics and Computing,2012,22(5): 1009-1020.
|
[44] |
MENGERSEN K L, PUDLO P, ROBERT C P. Bayesian computation via empirical likelihood[J]. Proceedings of the National Academy of Sciences of the United States of America,2013,110(4): 1321-1326.
|
[45] |
SISSON S A, FAN Y, BEAUMONT M. Handbook of Approximate Bayesian Computation [M]. Chapman and Hall/CRC, 2018.
|
[46] |
FRAZIER D T, MARTIN G M, ROBERT C P. On consistency of approximate Bayesian computation[R/OL]. [2019-08-26]. https://arxiv.org/pdf/1508.05178.pdf.
|
[47] |
HEIN J, SCHIERUP M, WIUF C. Gene Genealogies, Variation and Evolution: a Primer in Coalescent Theory[M]. Oxford: Oxford University Press, 2004.
|
[48] |
TANAKA M M, FRANCIS A R, LUCIANI F, et al. Using approximate Bayesian computation to estimate tuberculosis transmission parameters from genotype data[J].Genetics,2006,173(3): 1511-1520.
|
[49] |
WOOD S N. Statistical inference for noisy nonlinear ecological dynamic systems[J]. Nature,2010,466(7310): 1102-1104.
|
[50] |
ZHU W C, FAN Y. A novel approach for Markov random field with intractable normalizing constant on large lattices[J]. Journal of Computational and Graphical Statistics,2018,27(1): 59-70.
|
[51] |
PRANGLE D. Summary Statistics [M]. Chapman and Hall/CRC, 2018.
|
[52] |
JOYCE P, MARJORAM P. Approximately sufficient statistics and Bayesian computation[J]. Statistical Applications in Genetics and Molecular Biology,2008,7(1). DOI: 10.2202/1544-6115.1389.
|
[53] |
HASTIE T, TIBSHIRANI R, FRIEDMAN J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction [M]. 2nd ed. New York: Springer, 2009.
|
[54] |
MARDIA K V, KENT J T, BIBBY J M. Multivariate analysis[M]//Probability and Mathematical Statistics.New York: Academic Press, 1979.
|
[55] |
JIANG B, WU T Y, ZHENG C, et al. Learning summary statistic for approximate Bayesian computation via deep neural network[J]. Statistica Sinica,2017,27(4): 1595-1618.
|
[56] |
CREEL M. Neural nets for indirect inference[J]. Econometrics and Statistics,2017,2: 36-49.
|
[57] |
RAYNAL L, MARIN J M, PUDLO P, et al. ABC random forests for Bayesian parameter inference[J]. Bioinformatics,2018,〖STHZ〗 35(10): 1720-1728.
|
[58] |
BEAUMONT M A. Approximate Bayesian computation[J]. Annual Review of Statistics and Its Application,2019,6(1): 379-403.
|
[59] |
Gunning P W, Ghoshdastider U, Whitaker S, Popp D, Robinson R C. The evolution of compositionally and functionally distinct actin filaments[J].Journal of Cell Science,2015,128(11): 2009-2019.
|
[60] |
BERNTON E, JACOB P E, GERBER M, et al. Approximate Bayesian computation with the wasserstein distance[J]. Journal of the Royal Statistical Society: Series B (Statistical Methodology),2019,81(2): 235-269.
|
[61] |
PARK M, JITKRITTUM W, SEJDINOVIC D. K2-ABC: approximate Bayesian computation with kernel embeddings[C]// Proceedings of the 19th International Conference on Artificial Intelligence and Statistics (AISTATS).Cadiz, Spain, 2016.
|
[62] |
SISSON S A, FAN Y, TANAKA M M. Sequential monte carlo without likelihoods: errata[J]. Proceedings of the National Academy of Sciences of the United States of America,2009,106(39): 1760-1765.
|
[63] |
BEAUMONT M A, CORNUET J M, MARIN J M, et al. Adaptive approximate Bayesian computation[J]. Biometrika,2009,96(4): 983-990.
|
[64] |
TONI T, WELCH D, STRELKOWA N, et al. Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems[J]. Journal of the Royal Society Interface,2009,〖STHZ〗 6(31): 187-202.
|
[65] |
DUANE S, KENNEDY A D, PENDLETON B J, et al. Hybrid Monte Carlo[J]. Physics letters B,1987,195(2): 216-222.
|
[66] |
MEEDS E, LEENDERS R, WELLING M. Hamiltonian ABC[R/OL]. [2019-08-26]. https://arxiv.org/pdf/1503.01916.pdf.
|
[67] |
GIANNOPOULOS P, GODSILL S J. Estimation of car processes observed in noise using Bayesian inference[C]//2001 IEEE International Conference on Acoustics, Speech, and Signal Processing.Salt Lake City, UT, USA, 2001.
|
[68] |
JI C L, YANG L G, ZHU W C, et al. On Bayesian inference for continuous-time autoregressive models without likelihood[C]//2018 21st International Conference on Information Fusion (FUSION).2018: 2137-2142.
|
[69] |
HARVEY A C. Forecasting, Structural Time Series Models and the Kalman Filter [M]. Cambridge: Cambridge University Press, 1991.
|
[70] |
JONES R H. Fitting a continuous time autoregression to discrete data[C]// Proceedings of the Second Applied Time Series Symposium Held.Tulsa, Oklahoma, 1980.
|
[71] |
SZKELY G J, RIZZO M L, BAKIROV N K. Measuring and testing dependence by correlation of distances[J]. The Annals of Statistics,2007,35(6): 2769-2794.
|
[72] |
LI C L, CHANG W C, CHENG Y, et al. MMD GAN: towards deeper understanding of moment matching network[C]// Advances in Neural Information Processing Systems 30 (NIPS 2017).2017.
|
[73] |
HOFFMAN M D, BLEI D M, WANGC, et al. Stochastic variational inference[J]. Journal of Machine Learning Research,2013,14(1): 1303-1347.
|
[74] |
ZHAO S J, SONG J M, ERMON S. Infovae: information maximizing variational autoencoders[R/OL]. [2019-08-26]. https://arxiv.org/pdf/1706.02262.pdf.
|
[75] |
MAKHZANI A, SHLENS J, JAITLY N, et al. Adversarial autoencoders[R/OL]. [2019-08-26]. https://arxiv.org/pdf/1511.05644.pdf.
|
[76] |
MORENO A, ADEL T, MEEDS E, et al. Automatic variational ABC[R/OL]. [2019-08-26]. https://arxiv.org/pdf/1606.08549.pdf.
|
[77] |
王小娥, 蔺小林, 李建全. 一类具有脉冲免疫治疗的HIV-1感染模型的动力学分析[J]. 应用数学和力学, 2019,40(7): 728-740.(WANG Xiaoe, LIN Xiaolin, LI Jianquan. Dynamic analysis of a class of HIV-1 infection models with pulsed immunotherapy[J]. Applied Mathematics and Mechanics,2019,40(7): 728-740.(in Chinese))
|