留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于AUSM分裂的二维通量分裂格式

胡立军 吴世枫 翟健

胡立军, 吴世枫, 翟健. 基于AUSM分裂的二维通量分裂格式[J]. 应用数学和力学, 2020, 41(6): 615-626. doi: 10.21656/1000-0887.400264
引用本文: 胡立军, 吴世枫, 翟健. 基于AUSM分裂的二维通量分裂格式[J]. 应用数学和力学, 2020, 41(6): 615-626. doi: 10.21656/1000-0887.400264
HU Lijun, WU Shifeng, ZHAI Jian. A 2D Flux Splitting Scheme Based on the AUSM Splitting[J]. Applied Mathematics and Mechanics, 2020, 41(6): 615-626. doi: 10.21656/1000-0887.400264
Citation: HU Lijun, WU Shifeng, ZHAI Jian. A 2D Flux Splitting Scheme Based on the AUSM Splitting[J]. Applied Mathematics and Mechanics, 2020, 41(6): 615-626. doi: 10.21656/1000-0887.400264

基于AUSM分裂的二维通量分裂格式

doi: 10.21656/1000-0887.400264
详细信息
    作者简介:

    胡立军(1985—),男,博士(通讯作者. E-mail: hulijun@lsec.cc.ac.cn).

  • 中图分类号: O354|O241.82

A 2D Flux Splitting Scheme Based on the AUSM Splitting

  • 摘要: 基于对流迎风分裂思想构造的AUSM类格式具有简单、高效、分辨率高等优点,在计算流体力学中得到了广泛的应用.传统的AUSM类格式在计算界面数值通量时只考虑网格界面法向的波系,忽略了网格界面横向波系的影响.使用Liou-Steffen通量分裂方法将二维Euler方程的通量分裂成对流通量和压力通量,采用AUSM格式来分别计算对流数值通量和压力数值通量.通过求解考虑了横向波系影响的角点数值通量来构造一种真正二维的AUSM通量分裂格式.在计算一维算例时,该格式保留了精确捕捉激波和接触间断的优点.在计算二维算例时,该格式不仅具有更高的分辨率而且表现出更好的鲁棒性,可以消除强激波波后的不稳定现象.此外,在多维问题的数值模拟中,该格式大大地提高了稳定性CFL数,具有更高的计算效率.因此,它是一种精确、高效并且强鲁棒性的数值方法.
  • [1] ROE P L. Approximate Riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics,1981,43(2): 357-372.
    [2] TORO E F, SPRUCE M, SPEARES W. Restoration of the contact surface in the HLL Riemann solver[J]. Shock Waves,1994,4(1): 25-34.
    [3] STEGER J L, WARMING R F. Flux vector splitting of the inviscid gas dynamic equations with application to finite-difference methods[J]. Journal of Computational Physics,1981,40(2): 263-293.
    [4] VAN LEER B. Flux-vector splitting for the Euler equation[C]//8th International Conference on Numerical Methods in Fluid Dynamics . Berlin, Heidelberg: Springer-Verlag, 1982.
    [5] TORO E F, VZQUEZ-CENDN M E. Flux splitting schemes for the Euler equations[J]. Computers & Fluids,2012,70: 1-12.
    [6] LIOU M S, JR STEFFEN C J. A new flux splitting scheme[J]. Journal of Computational Physics,1993,107(1): 23-39.
    [7] LIOU M S. A sequel to AUSM: AUSM+[J]. Journal of Computational Physics,1996,129(2): 364-382.
    [8] KIM K H, LEE J H, RHO O H. An improvement of AUSM schemes by introducing the pressure-based weight functions[J]. Computers and Fluids,1998,27(3): 311-346.
    [9] KIM K H, LEE J H, RHO O H. Methods for the accurate computations of hypersonic flows Ⅰ: AUSMPW+ scheme[J]. Journal of Computational Physics,2001,174(1): 38-80.
    [10] LIOU M S. A sequel to AUSM, part Ⅱ: AUSM+-up for all speeds[J]. Journal of Computational Physics,2006,214(1): 137-170.
    [11] 胡立军, 袁礼. 一种基于TV分裂的真正多维Riemann解法器[J]. 应用数学和力学, 2017,38(3): 243-264.(HU Lijun, YUAN Li. A genuinely multidimensional Riemann solver based on the TV splitting[J]. Applied Mathematics and Mechanics,2017,38(3): 243-264.(in Chinese))
    [12] BRIO M, ZAKHARIAN A R, WEBB G M. Two-dimensional Riemann solver for Euler equations of gas dynamics[J]. Journal of Computational Physics,2001,167(1): 177-195.
    [13] RUMSEY C B, VAN LEER B, ROE P L. A multidimensional flux function with application to the Euler and Navier-Stokes equations[J]. Journal of Computational Physics,1993,105(2): 306-323.
    [14] COLLELA P. Multidimensional upwind methods for hyperbolic conservation laws[J]. Journal of Computational Physics,1990,87(1): 171-200.
    [15] LEVEQUE R J. Wave propagation algorithms for multidimensional hyperbolic systems[J]. Journal of Computational Physics,1997,131(2): 327-353.
    [16] SALTZMAN J. An unsplit 3D upwind method for hyperbolic conservation laws[J]. Journal of Computational Physics,1994,115(1): 153-168.
    [17] ROE P L. Discrete models for the numerical analysis of time-dependent multidimensional gas dynamics[J]. Journal of Computational Physics,1986,63(2): 458-476.
    [18] FEY M. Multidimensional upwinding, part Ⅰ: the method of transport for solving the Euler equations[J]. Journal of Computational Physics,1998,143: 159-180.
    [19] FEY M. Multidimensional upwinding, part Ⅱ: decomposition of the Euler equations into advection equations[J]. Journal of Computational Physics,1998,143: 181-203.
    [20] WENDROFF B. A two-dimensional HLLE Riemann solver and associated Godunov-type difference scheme for gas dynamics[J]. Computers & Mathematics With Applications,1999,38(1): 175-185.
    [21] BALSARA D S. Multidimensional HLLE Riemann solver: application to Euler and magnetohydrodynamic flows[J]. Journal of Computational Physics,2010,229(6): 1970-1993.
    [22] BALSARA D S. A two-dimensional HLLC Riemann solver for conservation laws: application to Euler and MHD flows[J]. Journal of Computational Physics,2012,231(22): 7476-7503.
    [23] BALSARA D S. Multidimensional Riemann problem with self-similar internal structure, part Ⅰ: application to hyperbolic conservation laws on structured meshes[J]. Journal of Computational Physics,2014,277: 163-200.
    [24] DUMBSER M, BALSARA D S. A new efficient formulation of the HLLEM Riemann solver for general conservative and non-conservative hyperbolic systems[J]. Journal of Computational Physics,2016,304: 275-319.
    [25] BALSARA D S, NKONGA B. Multidimensional Riemann problem with self-similar internal structure, part Ⅲ: a multidimensional analogue of the HLLI Riemann solver for conservative hyperbolic systems[J]. Journal of Computational Physics,2017,346: 25-48.
    [26] MANDAL J C, SHARMA V. A genuinely multidimensional convective pressure flux split Riemann solver for Euler equations[J]. Journal of Computational Physics,2015,297: 669-688.
    [27] QU F, SUN D, BAI J Q, et al. A genuinely two-dimensional Riemann solver for compressible flows in curvilinear coordinates[J]. Journal of Computational Physics,2019,386: 47-63.
    [28] 胡立军, 袁礼. 一种基于AUSM分裂的真正多维HLL格式[J]. 气体物理, 2016,1(6): 22-35.(HU Lijun, YUAN Li. A genuinely multidimensional HLL Riemann solver based on AUSM splitting[J]. Physics of Gases,2016,1(6): 22-35.(in Chinese))
    [29] SCHULZ-RINNE C W, COLLINS J P, GLAZ H M. Numerical solution of the Riemann problem for two-dimensional gas dynamics[J]. SIAM Journal of Scientific Computing,1993,14(6): 1394-1414.
  • 加载中
计量
  • 文章访问数:  1426
  • HTML全文浏览量:  293
  • PDF下载量:  349
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-06
  • 修回日期:  2019-11-02
  • 刊出日期:  2020-06-01

目录

    /

    返回文章
    返回