[1] |
ROE P L. Approximate Riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics,1981,43(2): 357-372.
|
[2] |
TORO E F, SPRUCE M, SPEARES W. Restoration of the contact surface in the HLL Riemann solver[J]. Shock Waves,1994,4(1): 25-34.
|
[3] |
STEGER J L, WARMING R F. Flux vector splitting of the inviscid gas dynamic equations with application to finite-difference methods[J]. Journal of Computational Physics,1981,40(2): 263-293.
|
[4] |
VAN LEER B. Flux-vector splitting for the Euler equation[C]//8th International Conference on Numerical Methods in Fluid Dynamics . Berlin, Heidelberg: Springer-Verlag, 1982.
|
[5] |
TORO E F, VZQUEZ-CENDN M E. Flux splitting schemes for the Euler equations[J]. Computers & Fluids,2012,70: 1-12.
|
[6] |
LIOU M S, JR STEFFEN C J. A new flux splitting scheme[J]. Journal of Computational Physics,1993,107(1): 23-39.
|
[7] |
LIOU M S. A sequel to AUSM: AUSM+[J]. Journal of Computational Physics,1996,129(2): 364-382.
|
[8] |
KIM K H, LEE J H, RHO O H. An improvement of AUSM schemes by introducing the pressure-based weight functions[J]. Computers and Fluids,1998,27(3): 311-346.
|
[9] |
KIM K H, LEE J H, RHO O H. Methods for the accurate computations of hypersonic flows Ⅰ: AUSMPW+ scheme[J]. Journal of Computational Physics,2001,174(1): 38-80.
|
[10] |
LIOU M S. A sequel to AUSM, part Ⅱ: AUSM+-up for all speeds[J]. Journal of Computational Physics,2006,214(1): 137-170.
|
[11] |
胡立军, 袁礼. 一种基于TV分裂的真正多维Riemann解法器[J]. 应用数学和力学, 2017,38(3): 243-264.(HU Lijun, YUAN Li. A genuinely multidimensional Riemann solver based on the TV splitting[J]. Applied Mathematics and Mechanics,2017,38(3): 243-264.(in Chinese))
|
[12] |
BRIO M, ZAKHARIAN A R, WEBB G M. Two-dimensional Riemann solver for Euler equations of gas dynamics[J]. Journal of Computational Physics,2001,167(1): 177-195.
|
[13] |
RUMSEY C B, VAN LEER B, ROE P L. A multidimensional flux function with application to the Euler and Navier-Stokes equations[J]. Journal of Computational Physics,1993,105(2): 306-323.
|
[14] |
COLLELA P. Multidimensional upwind methods for hyperbolic conservation laws[J]. Journal of Computational Physics,1990,87(1): 171-200.
|
[15] |
LEVEQUE R J. Wave propagation algorithms for multidimensional hyperbolic systems[J]. Journal of Computational Physics,1997,131(2): 327-353.
|
[16] |
SALTZMAN J. An unsplit 3D upwind method for hyperbolic conservation laws[J]. Journal of Computational Physics,1994,115(1): 153-168.
|
[17] |
ROE P L. Discrete models for the numerical analysis of time-dependent multidimensional gas dynamics[J]. Journal of Computational Physics,1986,63(2): 458-476.
|
[18] |
FEY M. Multidimensional upwinding, part Ⅰ: the method of transport for solving the Euler equations[J]. Journal of Computational Physics,1998,143: 159-180.
|
[19] |
FEY M. Multidimensional upwinding, part Ⅱ: decomposition of the Euler equations into advection equations[J]. Journal of Computational Physics,1998,143: 181-203.
|
[20] |
WENDROFF B. A two-dimensional HLLE Riemann solver and associated Godunov-type difference scheme for gas dynamics[J]. Computers & Mathematics With Applications,1999,38(1): 175-185.
|
[21] |
BALSARA D S. Multidimensional HLLE Riemann solver: application to Euler and magnetohydrodynamic flows[J]. Journal of Computational Physics,2010,229(6): 1970-1993.
|
[22] |
BALSARA D S. A two-dimensional HLLC Riemann solver for conservation laws: application to Euler and MHD flows[J]. Journal of Computational Physics,2012,231(22): 7476-7503.
|
[23] |
BALSARA D S. Multidimensional Riemann problem with self-similar internal structure, part Ⅰ: application to hyperbolic conservation laws on structured meshes[J]. Journal of Computational Physics,2014,277: 163-200.
|
[24] |
DUMBSER M, BALSARA D S. A new efficient formulation of the HLLEM Riemann solver for general conservative and non-conservative hyperbolic systems[J]. Journal of Computational Physics,2016,304: 275-319.
|
[25] |
BALSARA D S, NKONGA B. Multidimensional Riemann problem with self-similar internal structure, part Ⅲ: a multidimensional analogue of the HLLI Riemann solver for conservative hyperbolic systems[J]. Journal of Computational Physics,2017,346: 25-48.
|
[26] |
MANDAL J C, SHARMA V. A genuinely multidimensional convective pressure flux split Riemann solver for Euler equations[J]. Journal of Computational Physics,2015,297: 669-688.
|
[27] |
QU F, SUN D, BAI J Q, et al. A genuinely two-dimensional Riemann solver for compressible flows in curvilinear coordinates[J]. Journal of Computational Physics,2019,386: 47-63.
|
[28] |
胡立军, 袁礼. 一种基于AUSM分裂的真正多维HLL格式[J]. 气体物理, 2016,1(6): 22-35.(HU Lijun, YUAN Li. A genuinely multidimensional HLL Riemann solver based on AUSM splitting[J]. Physics of Gases,2016,1(6): 22-35.(in Chinese))
|
[29] |
SCHULZ-RINNE C W, COLLINS J P, GLAZ H M. Numerical solution of the Riemann problem for two-dimensional gas dynamics[J]. SIAM Journal of Scientific Computing,1993,14(6): 1394-1414.
|