| [1] | SEN A, RAJA SEKHAR T. Delta shock wave as self-similar viscosity limit for a strictly hyperbolic system of conservation laws[J].  Journal of Mathematical Physics,2019,60(5): 051510. | 
		
				| [2] | GALAKTIONOV V A. On self-similar collapse of discontinuous data for thin film equations with doubly degenerate mobility[R/OL]. 2009. [2019-09-12]. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.243.8638& rep=rep1& type=pdf. | 
		
				| [3] | 瞿霞. 流体力学中Euler方程组的Riemann问题[D]. 硕士学位论文. 上海: 上海师范大学, 2019.(QU Xia. Riemann problem of Euler equations in fluid mechanics[D]. Master Thesis. Shanghai: Shanghai Normal University, 2019.(in Chinese)) | 
		
				| [4] | SHEN C. The Riemann problem for the pressureless Euler system with the Coulomb-like friction term[J].  IMA Journal of Applied Mathematics,2015,81(1): 76-99. | 
		
				| [5] | WANG L. The Riemann problem with delta data for zero-pressure gas dynamics[J].  Chinese Annals of Mathematics(Series B),2016,37(3): 441-450. | 
		
				| [6] | ZHANG Y H, PAN R H, TAN Z. Zero dissipation limit to a Riemann solution consisting of two shock waves for the 1D compressible isentropic Navier-Stokes equations[J].  Science China: Mathematics,2013,56(11): 2205-2232. | 
		
				| [7] | HUANG F, WANG Y, YANG T. Vanishing viscosity limit of the compressible Navier-Stokes equations for solutions to a Riemann problem[J].  Archive for Rational Mechanics and Analysis,2012,203(2): 379-413. | 
		
				| [8] | CHEN Z, XIONG L, MENG Y J. Convergence to the superposition of rarefaction waves and contact discontinuity for the 1-D compressible Navier-Stokes-Korteweg system[J].  Journal of Mathematical Analysis and Applications,2014,412(2): 646-663. | 
		
				| [9] | CHEN Z Z, CHAI X J, WANG W J. Convergence rate of solutions to strong contact discontinuity for the one-dimensional compressible radiation hydrodynamics model[J].  Acta Mathematica Scientia,2016,〖STHZ〗 36(1): 265-282. | 
		
				| [10] | YOSHIA Z. Singular perturbation and scale hierarchy in plasma flows[C]// Autumn College on Plasma Physics: Long-Lived Structures and Self Organization in Plasmas . Trieste, Italy, 2003. | 
		
				| [11] | FERDOUSI M, YASMIN S, ASHRAF S, et al. Cylindrical and spherical ion-acoustic shock waves in nonextensive electron-positron-ion plasma[J].  IEEE Transactions on Plasma Science,2015,43(2): 643-649. | 
		
				| [12] | YANG X J, GAO F, SRIVASTAVA H M. Exact travelling wave solutions for the local fractional two-dimensional Burgers-type equations[J].  Computers & Mathematics With Applications,2017,73(2): 203-210. | 
		
				| [13] | SEADAWY A R. Ion acoustic solitary wave solutions of two-dimensional nonlinear Kadomtsev-Petviashvili-Burgers equation in quantum plasma[J].  Mathematical Methods in the Applied Sciences,2017,40(5): 1598-1607. | 
		
				| [14] | FANG B, TANG P, WANG Y G. The Riemann problem of the Burgers equation with a discontinuous source term[J].  Journal of Mathematical Analysis and Applications,2012,395(1): 307-335. | 
		
				| [15] | 拉奥 C S, 亚达夫 M K. 非齐次Burgers方程解的渐近性行为[J]. 应用数学和力学, 2010,31(9): 1133-1139. (RAO C S, YADAV M K. Asymptotic behavior of solutions to nonhomogeneous Burgers equation[J].  Applied Mathematics and Mechanics,2010,31(9): 1133-1139.(in Chinese)) | 
		
				| [16] | 伍卓群, 尹景学, 王春明. 椭圆与抛物型方程引论[M]. 北京: 科学出版社, 2003.(WU Zhuoqun, YIN Jingxue, WANG Chunming.  Introduction to Elliptic and Parabolic Equations [M]. Beijing: Science Press, 2003.(in Chinese)) |