[1] |
ABDOU M A. The extended F -expansion method and its application for a class of nonlinear evolution equations[J]. Chaos, Solitons and Fractals,2007,31(1): 95-104.
|
[2] |
ABDOU M A. An improved generalized F -expansion method and its applications[J]. Journal of Computational and Applied Mathematics,2008,214(1): 202-208.
|
[3] |
WANG M L, ZHANG J L, LI X Z. Application of the (G′/G)-expansion to travelling wave solutions of the Broer-Kaup and the approximate long water wave equations[J]. Applied Mathematics and Computation,2008,206(1): 321-326.
|
[4] |
WANG M L, LI X Z, ZHANG J L. The (G′/G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics[J]. Physics Letters A,2008,372(4): 417-423.
|
[5] |
LI L, DUAN C N, YU F J. An improved Hirota bilinear method and new application for a nonlocal integrable complex modified Korteweg-de Vries (MKdV) equation[J]. Physics Letters A,2019,383(14): 1578-1582.
|
[6] |
GUO D, TIAN S F, ZHANG T T. Integrability, soliton solutions and modulation instability analysis of a (2+1)-dimensional nonlinear Heisenberg ferromagnetic spin chain equation[J]. Computers and Mathematics With Applications,2019,77(3): 770-778.
|
[7] |
CHENG J P, HE J S. Miura and auto-Baecklund transformations for the discrete KP and mKP hierarchies and their constrained cases[J]. Communications in Nonlinear Science and Numerical Simulation,2019,69: 187-197.
|
[8] |
LIU X Z, YU J, LOU Z M. New Bcklund transformations of the (2+1)-dimensional Bogoyavlenskii equation via localization of residual symmetries[J].Computers and Mathematics With Applications,2018,76(7): 1669-1679.
|
[9] |
MA L Y, ZHAO H Q, SHEN S F, et al. Abundant exact solutions to the discrete complex mKdV equation by Darboux transformation[J]. Communications in Nonlinear Science and Numerical Simulation,2019,68: 31-40.
|
[10] |
WANG X, WANG L. Darboux transformation and nonautonomous solitons for a modified Kadomtsev-Petviashvili equation with variable coefficients[J]. 〖Computers and Mathematics With Applications,2018,75: 4201-4213.
|
[11] |
PARKES E J, DUFFY B R, ABBOTT P C. The Jacobi elliptic-function method for finding periodic-wave solutions to nonlinear evolution equations[J]. Physics Letters A,2002,295(5/6): 280-286.
|
[12] |
ZAYED E M E, ALURRFI K A E. A new Jacobi elliptic function expansion method for solving a nonlinear PDE describing the nonlinear low-pass electrical lines[J]. Chaos, Solitons and Fractals,2015,78: 148-155.
|
[13] |
石兰芳, 莫嘉琪. 一类强非线性非自治方程的奇摄动Robin边值问题[J]. 应用数学, 2017,30(2): 247-251.(SHI Lanfang, MO Jiaqi. A class of singular perturbation solutions to strong nonlinear equation Robin problems[J]. Mathematica Applicata,2017,30(2): 247-251.(in Chinese))
|
[14] |
石兰芳, 周先春. 一类扰动 Burgers 方程的孤子同伦映射解[J]. 物理学报, 2010,59(5): 2915-2918.(SHI Lanfang, ZHOU Xianchun. Homotopic mapping solution of soliton for a class of disturbed Burgers equation[J]. Acta Physica Sinica,2010,59(5): 2915-2918.(in Chinese))
|
[15] |
欧阳成, 石兰芳, 汪维刚, 等. 非线性强迫扰动Klein-Gordon方程的孤波渐进解法[J]. 数学年刊, 2017,38(A): 43-52.(OUYANG Cheng, SHI Lanfang, WANG Weigang, et al. The asymptotic solving method of solitary wave for the nonlinear forced disturbed Klein-Gordon equation[J]. Chinese Annals of Mathematics,2017,38(A): 43-52.(in Chinese))
|
[16] |
PENG Y Z, SHEN M, WANG Z J. Exact solutions to the higher order nonlinear Schr?dinger equation[J]. Mathematica Applicata,2007,20(3): 505-511.
|
[17] |
石兰芳, 聂子文. 应用全新G′/(G+G′)展开方法求解广义非线性Schr?dinger方程和耦合非线性Schr?dinger方程组[J]. 应用数学和力学, 2017,38(5): 539-552.(SHI Lanfang, NIE Ziwen. Solutions to the nonlinear Schr?dinger equation and coupled nonlinear Schr?dinger equations with a new G′/(G+G′)-expansion method[J]. Applied Mathematics and Mechanics,2017,38(5): 539-552.(in Chinese))
|
[18] |
ANKIEWICZ A, SOTO-CRESPO J M, AKHMEDIEV N. Rogue waves and rational solutions of the Hirota equation[J]. Physical Review E,2010,81: 046602.
|
[19] |
PORSEZIAN K, LAKSHMANAN M. On the dynamics of the radially symmetric Heisenberg ferromagnetic spin system[J]. Journal of Mathematical Physics,1991,32(10): 2923-2928.
|
[20] |
施业琼. (2+1)维Ginzburg-Landau方程的精确波解[J]. 数学的实践与认识, 2009,39(16): 247-251.(SHI Yeqiong. The exact wave solutions for 2+1 dimensional cubic-quintic Ginzburg-Landau equation[J]. Mathematics in Practice and Theory,2009,39(16): 247-251.(in Chinese))
|
[21] |
SHI Y, DAI Z, LI D. Application of exp-function method for 2D cubic-quintic Ginzburg-Landau equation[J]. Applied Mathematics and Computation,2009,210(1): 269-275.
|
[22] |
ZAYED E M E, ALURRFI K A E. The (G′/G,1/G) -expansion method and its applications to two nonlinear Schr?dinger equations describing the propagation of femtosecond pulses in nonlinear optical fibers[J]. Optic,2016,127(4): 1581-1589.
|