留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

在一个半无穷柱体上的非标准Stokes流体方程的二择一问题

李远飞

李远飞. 在一个半无穷柱体上的非标准Stokes流体方程的二择一问题[J]. 应用数学和力学, 2020, 41(4): 406-419. doi: 10.21656/1000-0887.400272
引用本文: 李远飞. 在一个半无穷柱体上的非标准Stokes流体方程的二择一问题[J]. 应用数学和力学, 2020, 41(4): 406-419. doi: 10.21656/1000-0887.400272
LI Yuanfei. Phragmén-Lindelöf Type Results for Non-Standard Stokes Flow Equations Around Semi-Infinite Cylinder[J]. Applied Mathematics and Mechanics, 2020, 41(4): 406-419. doi: 10.21656/1000-0887.400272
Citation: LI Yuanfei. Phragmén-Lindelöf Type Results for Non-Standard Stokes Flow Equations Around Semi-Infinite Cylinder[J]. Applied Mathematics and Mechanics, 2020, 41(4): 406-419. doi: 10.21656/1000-0887.400272

在一个半无穷柱体上的非标准Stokes流体方程的二择一问题

doi: 10.21656/1000-0887.400272
基金项目: 广东省普通高校特色创新类项目(2018KTSCX332);广东省自然科学基金(2017A030313037)
详细信息
    作者简介:

    李远飞(1982—), 特聘教授, 博士(E-mail: liqfd@163.com).

  • 中图分类号: O178

Phragmén-Lindelöf Type Results for Non-Standard Stokes Flow Equations Around Semi-Infinite Cylinder

  • 摘要: 考虑了定义在半无限柱体上的非标准Stokes流体方程的初边值问题,其中在柱体的有限端施加非线性边界条件,在柱体的侧面上满足零边界条件.在初始条件中参数的适当范围内,利用微分不等式技术,得到了Stokes流体方程的二择一结果.在衰减的情况下,证明了“全能量”可以由已知数据项控制.
  • [1] 〖JP2〗SHOWALTER R E. Cauchy problem for hyper-parabolic partial differential equations[J]. North-Holland Mathematics Studies,1985,110: 421-425.
    [2] CLARK G, OPPENHEIMER C. Quasireversibility methods for non-well-posed problems[J]. Electronic Journal of Differential Equations,1994,8: 1-9.
    [3] AMES K A, PAYNE L E. Asymptotic behavior for two regularizations of the Cauchy problem for the backward heat equation[J]. Mathematical Models and Methods in Applied Sciences,1998,8: 187-202.
    [4] AMES K A, PAYNE L E. Continuous dependence on modeling for some well-posed perturbations of the backward heat equations[J]. Journal of Inequalities and Applications,1999,3: 51-64.
    [5] AMES K A, PAYNE L E, SCHAEFER P W. On a nonstandard problem for heat conduction in a cylinder[J]. Applicable Analysis,2004,83: 125-133.
    [6] PAYNE L E, SCHAEFER P W, SONG J C. Some nonstandard problems in viscous ow[J]. Mathematical Methods in the Applied Sciences,2004,27: 2045-2053.
    [7] DE SAINT-VENANT A J C B. Mémoire sur la exion des prismes[J]. Journal de Mathématiques Pures et Appliquées,1856,1(2): 89-189.
    [8] LIN C, PAYNE L E. Spatial decay bounds in time dependent pipe ow of an incompressible viscous fluid[J]. SIAM Journal on Applied Mahematics,2004,65(2): 458-475.
    [9] HORGAN C O, PAYNE L E, WHEELER L T. Spatial decay estimates in transient heat equation[J]. Quarterly of Applied Mathematics,1984,42: 119-127.
    [10] HAMEED A A, HARFASH A J. Continuous dependence of double diffusive convection in a porous medium with temperature-dependent density[J]. Basrah Journal of Science,2019,37: 1-15.
    [11] 王欣, 郭科. 一类非凸优化问题广义交替方向法的收敛性[J]. 应用数学和力学, 2018,39(12): 1410-1425. (WANG Xin, GUO Ke. Convergence of the generalized alternating direction method of multipliers for a class of nonconvex optimization problems[J]. Applied Mathematics and Mechanics,2018,39(12): 1410-1425. (in Chinese))
    [12] 李远飞, 郭连红. 具有边界反应Brinkman-Forchheimer型多孔介质的结构稳定性[J]. 高校应用数学学报, 2019,34(3): 315-324. (LI Yuanfei, GUO Lianhong. Structural stability on boundary reaction terms in a porous medium of Brinkman-Forchheimer type[J]. Applied Mathematics: a Journal of Chinese Universities,2019,34(3): 315-324. (in Chinese))
    [13] 李远飞. 大尺度海洋大气动力学三维黏性原始方程对边界参数的连续依赖性[J]. 吉林大学学报(理学版), 2019,57(5): 1-7. (LI Yuanfei. Continuous dependence on boundary parameters for three-dimensional viscous primitive equation of large-scale ocean atmospheric dynamics[J]. Journal of Jilin University(Science Edition),2019,57(5): 1-7. (in Chinese))
    [14] HORGAN C O, PAYNE L E. Phragmén-Lindelf type results for harmonic functions with nonlinear boundary conditions[J]. Archive for Rational Mechanics and Analysis,1993,122: 123-144.
    [15] LIN C H, PAYNE L E. A Phragmén-Lindelf alternative for a class of quasilinear second order parabolic problems[J]. Differential and Integral Equations,1995,8: 539-551.
    [16] LIN C H, PAYNE L E. Phragmén-Lindelf type results for second order quasilinear parabolic equation in R2[J]. Zeitschrift für Angewandte Mathematik und Physik Zamp,1994,45: 294-311.
    [17] LIU Y, LIN C H. Phragmén-Lindelf type alternative results for the Stokes flow equation[J]. Mathematical Inequalities and Applications,2006,9(4): 671-694.
    [18] LESEDUARTE M C, QUINTANILLA R. Phragmén-Lindelf alternative for the Laplace equation with dynamic boundary conditions[J]. Journal of Applied Analysis and Computation,2017,7(4): 1323-1335.
    [19] PAYNE L E, SCHAEFER P W. Some Phragmén-Lindelf type results for the biharmonic equation[J]. Zeitschrift für Angewandte Mathematik und Physik ZAMP,1994,45: 414-432.
    [20] AMES K A, PAYNE L E, SONG J C. On two classes of nonstandard parabolic problems[J]. Journal of Mathematical Analysis and Applications,2005,311: 254-267.
    [21] BANDLE C. Isoperimetric Inequalities and Their Applications [M]. London: Pitman Press, 1980.
    [22] BABUKA I, AZIZ A K. Survey lectures on the mathmitical foundations of the nite element method[M]//The Mathmetical Foundation of the Finite Element Method With Application to Partial Differential Equation . New York: Academic Press, 1972.
    [23] AMES K A, PAYNE L E, SCHAEFER P W. Spatial decay estimates in time-dependent stokes flow[J]. SIAM Journal on Mathematical Analysis,1993,24: 1395-1413.
  • 加载中
计量
  • 文章访问数:  2025
  • HTML全文浏览量:  452
  • PDF下载量:  329
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-16
  • 刊出日期:  2020-04-01

目录

    /

    返回文章
    返回