留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含有离散时滞及分布时滞分数阶神经网络的渐近稳定性分析

刘健 张志信 蒋威

刘健, 张志信, 蒋威. 含有离散时滞及分布时滞分数阶神经网络的渐近稳定性分析[J]. 应用数学和力学, 2020, 41(6): 646-657. doi: 10.21656/1000-0887.400286
引用本文: 刘健, 张志信, 蒋威. 含有离散时滞及分布时滞分数阶神经网络的渐近稳定性分析[J]. 应用数学和力学, 2020, 41(6): 646-657. doi: 10.21656/1000-0887.400286
LIU Jian, ZHANG Zhixin, JIANG Wei. Asymptotic Stability Analysis of Fractional Neural Networks With Discrete Delays and Distributed Delays[J]. Applied Mathematics and Mechanics, 2020, 41(6): 646-657. doi: 10.21656/1000-0887.400286
Citation: LIU Jian, ZHANG Zhixin, JIANG Wei. Asymptotic Stability Analysis of Fractional Neural Networks With Discrete Delays and Distributed Delays[J]. Applied Mathematics and Mechanics, 2020, 41(6): 646-657. doi: 10.21656/1000-0887.400286

含有离散时滞及分布时滞分数阶神经网络的渐近稳定性分析

doi: 10.21656/1000-0887.400286
基金项目: 国家自然科学基金(11371027;11471015;11601003);安徽省自然科学基金(1608085MA12)
详细信息
    作者简介:

    刘健(1994—),男,硕士生(E-mail: 1916869562@qq.com);张志信(1976—),男,副教授,硕士生导师(通讯作者. E-mail: zhang_zhi_x@sina.com);蒋威(1959—),男,教授,博士生导师(E-mail: jiangwei@ahu.edu.cn).

  • 中图分类号: O175.15

Asymptotic Stability Analysis of Fractional Neural Networks With Discrete Delays and Distributed Delays

Funds: The National Natural Science Foundation of China(11371027;11471015;11601003)
  • 摘要: 研究了含有离散时滞及分布时滞的分数阶神经网络在Caputo导数意义下的渐近稳定性问题.通过构造Lyapunov函数和利用分数阶Razumikhin定理给出了含有离散时滞和分布时滞的分数阶神经网络渐近稳定性的充分条件,并给出4个例子验证了定理条件的有效性.
  • [1] PODLUBNY I. Fractional Differential Equations [M]. San Diego: Academic Press, 1999.
    [2] OLDHAM K B, SPANIER J. The Fractional Calculus [M]. New York: Academic Press, 1974.
    [3] KILBAS A A, SRIVASTAVA H M, TRUJILLO J J. Theory and Applications of Fractional Differential Equations [M]. Amsterdam: Elsevier Science, 2006.
    [4] MILLER K S, ROSS B. An Introduction to the Fractional Calculus and Fractional Differential Equations [M]. New York: John Wiley and Sons, 1993.
    [5] ARENA P, FORTUNA L, PORTO L. Chaotic behavior in noninteger-order cellular neural networks[J]. Physical Review E,2000,61(1): 776-781.
    [6] KASLIK E, SIVASUNDARAM S. Nonlinear dynamics and chaos in fractional-order neural networks[J]. Neural Networks,2012,32: 245-256.
    [7] HUANG X, ZHAO Z, WANG Z, et al. Chaos and hyperchaos in fractional-order cellular neural networks[J]. Neurocomputing,2012,94: 13-21.
    [8] 张平奎, 杨绪君. 基于激励滑模控制的分数阶神经网络的修正投影同步研究[J]. 应用数学和力学, 2018,39(3): 343-354.(ZHANG Pingkui, YANG Xujun. Modified projective synchronization of a class of fractional-order neural networks based on active sliding mode control[J]. Applied Mathematics and Mechanics,2018,39(3): 343-354.(in Chinese))
    [9] ZHANG X X, NIU P F, MA Y P, et al. Global Mittag-Leffler stability analysis of fractional-order impulsive neural networks with one-side Lipschitz condition[J]. Neural Networks,2017,94: 67-75.
    [10] LIU S X, YU Y G, ZHANG S, et al. Robust stability of fractional-order memristor-based Hopfield neural networks with parameter disturbances[J]. Physica A,2018,509: 845-854.
    [11] WU H Q, ZHANG X X, XUE S H, et al. LMI conditions to global Mittag-Leffler stability of fractional-order neural networks with impulses[J]. Neurocomputing,2016,193: 148-154.
    [12] LIANG S, WU R C, CHEN L P. Comparison principles and stability of nonlinear fractional-order cellular neural networks with multiple time delays[J]. Neurocomputing,2015,168: 618-625.
    [13] LIU W Z, JIANG M H, YAN M. Stability analysis of memristor-based time-delay fractional-order neural networks[J]. Neurocomputing,2019,323: 117-127.
    [14] LI Y, JIANG W, HU B B. Stability of neutral fractional neural networks with delay[J]. Chinese Quarterly Journal of Mathematics,2016,〖STHZ〗 31(4): 422-429.
    [15] WANG H, YU Y G, WEN G G, et al. Global stability analysis of fractional-order Hopfield neural networks with time delay[J]. Neurocomputing,2015,154: 15-23.
    [16] 王利敏, 宋乾坤, 赵振江. 基于忆阻的分数阶时滞复值神经网络的全局渐近稳定性[J]. 应用数学和力学, 2017,38(3): 333-346.(WANG Limin, SONG Qiankun, ZHAO Zhenjiang. Global asymptotic stability of memristor-based fractional-order complex-valued neural networks with time delays[J]. Applied Mathematics and Mechanics,2017,38(3): 333-346.(in Chinese))
    [17] DUARTE-MERMOUND M A, AGUILA-CAMACHO N, GALLEGOS J A, et al. Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems[J]. Communications in Nonlinear Science and Numerical Simulation,2015,22: 650-659.
    [18] LIU S, ZHOU X F, LI X Y, et al. Asymptotical stability of Riemann-Liouville fractional singular systems with multiple time-varying delays[J]. Applied Mathematics Letters,2017,65: 32-39.
    [19] WEN Y H, ZHOU X F, ZHANG Z X, et al. Lyapunov method for nonlinear fractional differential systems with delay[J]. Nonlinear Dynamics,2015,82(1): 1015-1025.
    [20] BOYD S, EL-GHAOUI L, FERON E, et al. Linear Matrix Inequalities in System and Control Theory [M]. Philadelphia: SIAM, 1994 .
    [21] GU K Q, KHARITONOV V L, CHEN J. Stability of Time-Delay Systems [M]. Boston, MA: Birkhuser, 2003.
    [22] BHALEKAR S, GEJJI V. A predictor-corrector scheme for solving nonlinear delay differential equations of fractional order[J]. Journal of Fractional Calculus and Applications,2011,1(5): 1-9.
  • 加载中
计量
  • 文章访问数:  1418
  • HTML全文浏览量:  324
  • PDF下载量:  482
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-23
  • 修回日期:  2019-10-26
  • 刊出日期:  2020-06-01

目录

    /

    返回文章
    返回