[1] |
PODLUBNY I. Fractional Differential Equations [M]. San Diego: Academic Press, 1999.
|
[2] |
OLDHAM K B, SPANIER J. The Fractional Calculus [M]. New York: Academic Press, 1974.
|
[3] |
KILBAS A A, SRIVASTAVA H M, TRUJILLO J J. Theory and Applications of Fractional Differential Equations [M]. Amsterdam: Elsevier Science, 2006.
|
[4] |
MILLER K S, ROSS B. An Introduction to the Fractional Calculus and Fractional Differential Equations [M]. New York: John Wiley and Sons, 1993.
|
[5] |
ARENA P, FORTUNA L, PORTO L. Chaotic behavior in noninteger-order cellular neural networks[J]. Physical Review E,2000,61(1): 776-781.
|
[6] |
KASLIK E, SIVASUNDARAM S. Nonlinear dynamics and chaos in fractional-order neural networks[J]. Neural Networks,2012,32: 245-256.
|
[7] |
HUANG X, ZHAO Z, WANG Z, et al. Chaos and hyperchaos in fractional-order cellular neural networks[J]. Neurocomputing,2012,94: 13-21.
|
[8] |
张平奎, 杨绪君. 基于激励滑模控制的分数阶神经网络的修正投影同步研究[J]. 应用数学和力学, 2018,39(3): 343-354.(ZHANG Pingkui, YANG Xujun. Modified projective synchronization of a class of fractional-order neural networks based on active sliding mode control[J]. Applied Mathematics and Mechanics,2018,39(3): 343-354.(in Chinese))
|
[9] |
ZHANG X X, NIU P F, MA Y P, et al. Global Mittag-Leffler stability analysis of fractional-order impulsive neural networks with one-side Lipschitz condition[J]. Neural Networks,2017,94: 67-75.
|
[10] |
LIU S X, YU Y G, ZHANG S, et al. Robust stability of fractional-order memristor-based Hopfield neural networks with parameter disturbances[J]. Physica A,2018,509: 845-854.
|
[11] |
WU H Q, ZHANG X X, XUE S H, et al. LMI conditions to global Mittag-Leffler stability of fractional-order neural networks with impulses[J]. Neurocomputing,2016,193: 148-154.
|
[12] |
LIANG S, WU R C, CHEN L P. Comparison principles and stability of nonlinear fractional-order cellular neural networks with multiple time delays[J]. Neurocomputing,2015,168: 618-625.
|
[13] |
LIU W Z, JIANG M H, YAN M. Stability analysis of memristor-based time-delay fractional-order neural networks[J]. Neurocomputing,2019,323: 117-127.
|
[14] |
LI Y, JIANG W, HU B B. Stability of neutral fractional neural networks with delay[J]. Chinese Quarterly Journal of Mathematics,2016,〖STHZ〗 31(4): 422-429.
|
[15] |
WANG H, YU Y G, WEN G G, et al. Global stability analysis of fractional-order Hopfield neural networks with time delay[J]. Neurocomputing,2015,154: 15-23.
|
[16] |
王利敏, 宋乾坤, 赵振江. 基于忆阻的分数阶时滞复值神经网络的全局渐近稳定性[J]. 应用数学和力学, 2017,38(3): 333-346.(WANG Limin, SONG Qiankun, ZHAO Zhenjiang. Global asymptotic stability of memristor-based fractional-order complex-valued neural networks with time delays[J]. Applied Mathematics and Mechanics,2017,38(3): 333-346.(in Chinese))
|
[17] |
DUARTE-MERMOUND M A, AGUILA-CAMACHO N, GALLEGOS J A, et al. Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems[J]. Communications in Nonlinear Science and Numerical Simulation,2015,22: 650-659.
|
[18] |
LIU S, ZHOU X F, LI X Y, et al. Asymptotical stability of Riemann-Liouville fractional singular systems with multiple time-varying delays[J]. Applied Mathematics Letters,2017,65: 32-39.
|
[19] |
WEN Y H, ZHOU X F, ZHANG Z X, et al. Lyapunov method for nonlinear fractional differential systems with delay[J]. Nonlinear Dynamics,2015,82(1): 1015-1025.
|
[20] |
BOYD S, EL-GHAOUI L, FERON E, et al. Linear Matrix Inequalities in System and Control Theory [M]. Philadelphia: SIAM, 1994 .
|
[21] |
GU K Q, KHARITONOV V L, CHEN J. Stability of Time-Delay Systems [M]. Boston, MA: Birkhuser, 2003.
|
[22] |
BHALEKAR S, GEJJI V. A predictor-corrector scheme for solving nonlinear delay differential equations of fractional order[J]. Journal of Fractional Calculus and Applications,2011,1(5): 1-9.
|