留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

连续及不连续各向异性热传导问题的数值流形方法求解

刘思敏 张慧华 韩尚宇 刘强

刘思敏, 张慧华, 韩尚宇, 刘强. 连续及不连续各向异性热传导问题的数值流形方法求解[J]. 应用数学和力学, 2020, 41(6): 591-603. doi: 10.21656/1000-0887.400289
引用本文: 刘思敏, 张慧华, 韩尚宇, 刘强. 连续及不连续各向异性热传导问题的数值流形方法求解[J]. 应用数学和力学, 2020, 41(6): 591-603. doi: 10.21656/1000-0887.400289
LIU Simin, ZHANG Huihua, HAN Shangyu, LIU Qiang. Solutions of Continuous and Discontinuous Anisotropic Heat Conduction Problems With the Numerical Manifold Method[J]. Applied Mathematics and Mechanics, 2020, 41(6): 591-603. doi: 10.21656/1000-0887.400289
Citation: LIU Simin, ZHANG Huihua, HAN Shangyu, LIU Qiang. Solutions of Continuous and Discontinuous Anisotropic Heat Conduction Problems With the Numerical Manifold Method[J]. Applied Mathematics and Mechanics, 2020, 41(6): 591-603. doi: 10.21656/1000-0887.400289

连续及不连续各向异性热传导问题的数值流形方法求解

doi: 10.21656/1000-0887.400289
基金项目: 国家自然科学基金(11462014);江西省自然科学基金(20192BAB202001;20151BAB202003);江西省教育厅科学技术研究项目(GJJ180533)
详细信息
    作者简介:

    刘思敏(1996—),女,硕士生(E-mail: liusiminkathy@163.com);张慧华(1982—),男,教授,博士(通讯作者. E-mail: hhzhang@nchu.edu.cn).

  • 中图分类号: TK124

Solutions of Continuous and Discontinuous Anisotropic Heat Conduction Problems With the Numerical Manifold Method

Funds: The National Natural Science Foundation of China(11462014)
  • 摘要: 热传导问题是工程实际中的常见问题.与各向同性材料相比,各向异性材料的热传导更为复杂,因而准确预测其内部的温度分布具有重要的意义.该文发展了一种用于求解典型连续及不连续各向异性稳态热传导问题的数值流形方法(NMM).根据问题的控制微分方程、边界条件以及变分原理,导出了求解此类问题的NMM离散方程.采用独立于物理域所有边界的均匀数学覆盖对几个连续及不连续算例进行了分析,证实了方法的可行性及精度,表明NMM能够很好地模拟各向异性材料的热传导问题.此外,还进一步探讨了材料属性等因素对温度场的影响规律.
  • [1] PRESTINI D, FILIPPINI G, ZDANSKI P S B, et al. Fundamental approach to anisotropic heat conduction using the element-based finite volume method[J].Numerical Heat Transfer, Part B: Fundamentals,2017,71(4): 327-345.
    [2] 闫相桥, 武海鹏. 正交各向异性材料三维热传导问题的有限元列式[J]. 哈尔滨工业大学学报, 2003,35(4): 405-409. (YAN Xiangqiao, WU Haipeng. Finite element formulation of 3-D heat transfer in orthotropic materials[J]. Journal of Harbin Institute of Technology,2003,35(4): 405-409.(in Chinese))
    [3] MERA N S, ELLIOTT L, INGHAM D B, et al. A comparison of boundary element method formulations for steady state anisotropic heat conduction problems[J]. Engineering Analysis With Boundary Elements,2001,25(2): 115-128.
    [4] 刘俊俏, 苗福生, 李星. 二维各向异性功能梯度材料热传导的边界元分析[J]. 西安交通大学学报, 2013,47(5): 77-81.(LIU Junqiao, MIAO Fusheng, LI Xing. Boundary element analysis of the two-dimensional heat conduction equation for anisotropic fuctionally graded materials[J]. Journal of Xi’an Jiaotong University,2013,47(5): 77-81.(in Chinese))
    [5] 陈闽慷, 杜涛, 苏雪, 等. 二维非线性正交各向异性材料的瞬态热传导反问题数值方法[J]. 国防科技大学学报, 2017,39(1): 194-198.(CHEN Minkang, DU Tao, SU Xue, et al. A numerical method for two-dimensional nonlinear transient inverse heat conduction problems for orthotropic material[J]. Journal of National University of Defense Technology,2017,39(1): 194-198.(in Chinese))
    [6] 谢佳萱, 李冬明, 聂峰华, 等. 正交各向异性稳态热传导问题的ICVEFG方法[J]. 固体力学学报, 2019,40(1): 74-81.(XIE Jiaxuan, LI Dongming, NIE Fenghua, et al. The ICVEFG method for steady-state heat conduction problems in orthotropic media[J]. Chinese Journal of Solid Mechanics,2019,40(1): 74-81.(in Chinese))
    [7] SHI G H. Manifold method of material analysis[C]// Proceedings of the 〖STBX〗9th Army Conference on Applied Mathematics and Computing . Minneapolis, Minnesota, 1991.
    [8] MA G W, AN X M, ZHANG H H, et al. Modeling complex crack problems using the numerical manifold method[J]. International Journal of Fracture,2009,156(1): 21-35.
    [9] KOUREPINIS D, PEARCE C, BICANIC N. Higher-order discontinuous modeling of fracturing in concrete using the numerical manifold method[J]. International Journal of Computational Methods,2010,7(1): 83-106.
    [10] YANG Y T, ZHENG H. A three-node triangular element fitted to numerical manifold method with continuous nodal stress for crack analysis[J]. Engineering Fracture Mechanics,2016,162: 51-75.
    [11] WU Z J, JIANG Y L, LIU Q S, et al. Investigation of the excavation damaged zone around deep TBM tunnel using a Voronoi-element based explicit numerical manifold method[J]. International Journal of Rock Mechanics and Mining Sciences,2018,112: 158-170.
    [12] WU Z J, XU X Y, LIU Q S, et al. A zero-thickness cohesive element-based numerical manifold method for rock mechanical behavior with micro-Voronoi grains[J]. Engineering Analysis With Boundary Elements,2018,96: 94-108.
    [13] YANG S K, CAO M S, REN X H, et al. 3D crack propagation by the numerical manifold method[J]. Computers & Structures,2018,194: 116-129.
    [14] YANG Y T, TANG X H, ZHENG H, et al. Hydraulic fracturing modeling using the enriched numerical manifold method[J]. Applied Mathematical Modelling,2018,53: 462-486.
    [15] GUO H W, ZHENG H, ZHUANG X Y. Numerical manifold method for vibration analysis of Kirchhoff’s plates of arbitrary geometry[J]. Applied Mathematical Modelling,2019,66: 695-727.
    [16] ZHENG H, YANG Y T, SHI G H. Reformulation of dynamic crack propagation using the numerical manifold method[J]. Engineering Analysis With Boundary Elements,2019,105: 279-295.
    [17] 林绍忠, 明峥嵘, 祁勇峰. 用数值流形法分析温度场及温度应力[J]. 长江科学院院报, 2007,24(5): 72-75.(LIN Shaozhong, MING Zhengrong, QI Yongfeng. Thermal field and thermal stress analysis based on numerical manifold method[J]. Journal of Yangtze River Scientific Research Institute,2007,24(5): 72-75.(in Chinese))
    [18] 刘泉声, 刘学伟. 裂隙岩体温度场数值流形方法初步研究[J]. 岩土工程学报, 2013,35(4): 635-642.(LIU Quansheng, LIU Xuewei. Preliminary research on numerical manifold method for temperature field of fractured rock mass[J]. Chinese Journal of Geotechnical Engineering,2013,35(4): 635-642.(in Chinese))
    [19] 谭育新, 张慧华, 胡国栋. 二维稳态热传导问题的正六边形流形元研究[J]. 应用数学和力学, 2017,38(5): 594-604.(TAN Yuxin, ZHANG Huihua, HU Guodong. 2D steady heat conduction analysis with the regular hexagon numerical manifold method[J]. Applied Mathematics and Mechanics,2017,38(5): 594-604.(in Chinese))
    [20] ZHANG H H, LIU S M, HAN S Y, et al. Modeling of 2D cracked FGMs under thermo-mechanical loadings with the numerical manifold method[J]. International Journal of Mechanical Sciences,2018,148: 103-117.
    [21] ZHANG H H, LIU S M, HAN S Y, et al. The numerical manifold method for crack modeling of two-dimensional functionally graded materials under thermal shocks[J]. Engineering Fracture Mechanics,2019,208: 90-106.
    [22] BABUSKA I, MELENK J M. The partition of unity method[J]. International Journal for Numerical Methods in Engineering,1997,40(4): 727-758.
    [23] BAYESTEH H, AFSHAR A, MOHAMMDI S. Thermo-mechanical fracture study of inhomogeneous cracked solids by the extended isogeometric analysis method[J]. European Journal of Mechanics A: Solids,2015,51: 123-139.
    [24] ZHANG H H, MA G W. Fracture modeling of isotropic functionally graded materials by the numerical manifold method[J]. Engineering Analysis With Boundary Elements,2014,38: 61-71.
    [25] ZHANG H H, HAN S Y, FAN L F. Modeling 2D transient heat conduction problems by the numerical manifold method on Wachspress polygonal elements[J].Applied Mathematical Modelling,2017,48: 607-620.
  • 加载中
计量
  • 文章访问数:  1364
  • HTML全文浏览量:  277
  • PDF下载量:  275
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-25
  • 修回日期:  2019-10-25
  • 刊出日期:  2020-06-01

目录

    /

    返回文章
    返回