留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复杂网络上耦合神经系统的非聚类相同步

谢一丁 王征平 刘帅

谢一丁, 王征平, 刘帅. 复杂网络上耦合神经系统的非聚类相同步[J]. 应用数学和力学, 2020, 41(6): 627-635. doi: 10.21656/1000-0887.400297
引用本文: 谢一丁, 王征平, 刘帅. 复杂网络上耦合神经系统的非聚类相同步[J]. 应用数学和力学, 2020, 41(6): 627-635. doi: 10.21656/1000-0887.400297
XIE Yiding, WANG Zhengping, LIU Shuai. Networked Non-Clustering Phase Synchronization in Coupled Neuron Systems[J]. Applied Mathematics and Mechanics, 2020, 41(6): 627-635. doi: 10.21656/1000-0887.400297
Citation: XIE Yiding, WANG Zhengping, LIU Shuai. Networked Non-Clustering Phase Synchronization in Coupled Neuron Systems[J]. Applied Mathematics and Mechanics, 2020, 41(6): 627-635. doi: 10.21656/1000-0887.400297

复杂网络上耦合神经系统的非聚类相同步

doi: 10.21656/1000-0887.400297
基金项目: 国家自然科学基金(11605142;11871386)
详细信息
    作者简介:

    谢一丁(1999—),男(E-mail: xyd@whut.edu.cn);王征平(1979—),男,教授(E-mail: zpwang@whut.edu.cn);刘帅(1987—),男,副教授(通讯作者. E-mail: liushuai0109@mails.ucas.ac.cn).

  • 中图分类号: O193

Networked Non-Clustering Phase Synchronization in Coupled Neuron Systems

Funds: The National Natural Science Foundation of China(11605142;11871386)
  • 摘要: 考虑了不同复杂网络结构(小世界、无标度和随机网络)条件下的耦合神经元系统,针对其进入相同步的同步化路径进行了建模与仿真,发现系统呈现出非聚类相同步现象,并对其形成原因进行了定性分析.结果表明:复杂网络上的耦合神经元系统与其在规则网络下有相同的同步行为,系统均不出现通常耦合相振子中的聚类成群现象,而表现为随着耦合强度的增加所有神经元渐进趋于同步.另外,随着放电尖峰的插入与弥合,最终导致系统个体平均频率先增强后衰减的变化.这些结果将丰富对于网络动力学行为(尤其是相同步)的认识,对理解神经认知科学具有一定意义.
  • [1] ARENAS A, DAZ-GUILERA A, KURTHS J, et al. Synchronization in complex networks[J]. Physics Reports,2008,469(3): 93-153.
    [2] TANG Y, QIAN F, GAO H, et al. Synchronization in complex networks and its application: a survey of recent advances and challenges[J]. Annual Reviews in Control,2014,38(2): 184-198.
    [3] PECORA L M, CARROLL T L, JOHNSON G A, et al. Fundamentals of synchronization in chaotic systems, concepts, and applications[J]. Chaos,1997, 7(4): 520-543.
    [4] ROSENBLUM M G, PIKOVSKY A S, KURTHS J. Phase synchronization of chaotic oscillators[J]. Physical Review Letters,1996,76(11): 1804-1807.
    [5] ZHENG Z G, HU G, HU B B. Phase slips and phase synchronization of coupled oscillators[J]. Physical Review Letters,1998,81(24): 5318-5321.
    [6] 郑志刚, 胡岗, 周昌松, 等. 耦合混沌系统的相同步: 从高维混沌到低维混沌[J]. 物理学报, 2000,49(12): 2320-2327.(ZHENG Zhigang, HU Gang, ZHOU Changsong, et al. Phase synchronization in coupled chaotic systems: transitions from high-to low-dimensional chaos[J]. Acta Physica Sinica,2000,49(12): 2320-2327.(in Chinese))
    [7] ZHAN M, ZHENG Z G, HU G, et al. Nonlocal chaotic phase synchronization[J]. Physical Review E,2000,62(3): 3552-3557.
    [8] GOMEZ-GARDENES J, MORENO Y, ARENAS A. Paths to synchronization on complex networks[J]. Physical Review Letters,2007,98(3): 034101. DOI: 10.1103/PhysRevLett.98.034101.
    [9] CHIANG W Y, LAI P Y, CHAN C K. Frequency enhancement in coupled noisy excitable elements[J]. Physical Review Letters,2011,106(25): 254102. DOI: 10.1103/PhysRevLett.106.254102.
    [10] LIU S, ZHAN M. Clustering versus non-clustering phases synchronizations[J]. Chaos,2014,24(1): 013104. DOI: 10.1063/1.4861685.
    [11] LIU S, HE Z W, ZHAN M. Firing rates of coupled noisy excitable elements[J]. Frontiers of Physics,2014,9(1): 120-127.
    [12] 张玮玮, 陈定元, 吴然超, 等. 一类基于忆阻器分数阶时滞神经网络的修正投影同步[J]. 应用数学和力学, 2018,39(2): 239-248.(ZHANG Weiwei, CHEN Dingyuan, WU Ranchao, et al. Modified-projective-synchronization of memristor-based fractional-order delayed neural networks[J]. Applied Mathematics and Mechanics,2018,39(2): 239-248.(in Chinese))
    [13] 李天择, 郭明, 陈向勇, 等. 基于多切换传输的复变量混沌系统的有限时组合同步控制[J]. 应用数学和力学, 2019,40(11): 1299-1308.(LI Tianze, GUO Ming, CHEN Xiangyong, et al. Finite-time combination synchronization control of complex-variable chaotic systems with multi-switching transmission[J]. Applied Mathematics and Mechanics,2019,40(11): 1299-1308.(in Chinese))
    [14] HUANG Z, ZHAN M, LI F, et al. Single-clustering synchronization in a ring of Kuramoto oscillators[J]. Journal of Physics A: Mathematical and Theoretical,2014,47(12): 125101. DOI: 10.1088/1751-8113/47/12/125101.
    [15] WATTS D J ,STROGATZ S H. Collective dynamics of ‘small-world’ networks[J]. Nature,1998,393(6684): 440-442.
    [16] BARABASI A L, ALBERT R. Emergence of scaling in random networks[J]. Science,1999,286(5439): 509-512.
    [17] STROGATZ S H. Exploring complex networks[J]. Nature,2001,410(6825): 268-276.
    [18] HONEYCUTT R L. Stochastic Runge-Kutta algorithms, Ⅰ: white noise[J]. Physical Review A,1992,45(2): 600-603.
  • 加载中
计量
  • 文章访问数:  1282
  • HTML全文浏览量:  213
  • PDF下载量:  236
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-10
  • 修回日期:  2019-11-26
  • 刊出日期:  2020-06-01

目录

    /

    返回文章
    返回