留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

改进集映射下参数广义向量拟平衡问题解映射的Berge下半连续性

邵重阳 彭再云 刘芙萍 王泾晶

邵重阳, 彭再云, 刘芙萍, 王泾晶. 改进集映射下参数广义向量拟平衡问题解映射的Berge下半连续性[J]. 应用数学和力学, 2020, 41(8): 912-920. doi: 10.21656/1000-0887.400307
引用本文: 邵重阳, 彭再云, 刘芙萍, 王泾晶. 改进集映射下参数广义向量拟平衡问题解映射的Berge下半连续性[J]. 应用数学和力学, 2020, 41(8): 912-920. doi: 10.21656/1000-0887.400307
SHAO Chongyang, PENG Zaiyun, LIU Fuping, WANG Jingjing. Berge Lower Semi-Continuity of Parametric Generalized Vector Quasi-Equilibrium Problems Under Improvement Set Mappings[J]. Applied Mathematics and Mechanics, 2020, 41(8): 912-920. doi: 10.21656/1000-0887.400307
Citation: SHAO Chongyang, PENG Zaiyun, LIU Fuping, WANG Jingjing. Berge Lower Semi-Continuity of Parametric Generalized Vector Quasi-Equilibrium Problems Under Improvement Set Mappings[J]. Applied Mathematics and Mechanics, 2020, 41(8): 912-920. doi: 10.21656/1000-0887.400307

改进集映射下参数广义向量拟平衡问题解映射的Berge下半连续性

doi: 10.21656/1000-0887.400307
基金项目: 国家自然科学基金(11301571);重庆市巴渝学者计划;重庆市基础与前沿研究项目(cstc2018jcyjAX0337);重庆市创新团队(CXTDX201601022);重庆市留学归国人员创新项目(cx2019148)
详细信息
    作者简介:

    邵重阳(1993—),男,硕士(E-mail: shaocyll@sina.com);彭再云(1980—),男,教授,博士(通讯作者. E-mail: pengzaiyun@126.com).

  • 中图分类号: O224

Berge Lower Semi-Continuity of Parametric Generalized Vector Quasi-Equilibrium Problems Under Improvement Set Mappings

Funds: The National Natural Science Foundation of China(11301571)
  • 摘要: 该文主要讨论了一类新的参数广义向量拟平衡问题解映射的稳定性.首先,定义了改进集映射,基于改进集映射,将序结构进行推广并应用于拟平衡问题的研究,得到了改进集映射下参数广义向量拟平衡问题(IPGVQEP).然后,给出了一类与改进集映射相关的非线性标量化函数Ψ,利用非线性标量化函数Ψ得到了与原问题(IPGVQEP)对应的标量化问题(IPGVQEP)Ψ,并获得了原问题与标量化问题解之间的关系.最后,引入了一个关键假设HΨ,借助关键假设HΨ及原问题与标量化问题间解的关系,获得了IPGVQEP解映射Berge下半连续性的充分必要条件,并举例验证了所得结果.
  • [1] BLUM E, OETTLI W. From optimization and variational inequalities to equilibrium problems[J]. The Mathmatics Student,1994,63: 123-145.
    [2] ANSARI Q H, OETTLI W, SCHLAGER D. A generalization of vectorial equilibria[J]. Mathematical Methods of Operations Research,1997,46(2): 147-152.
    [3] BIANCHI M, HADJISAVVAS N, SCHAIBLE S. Vector equilibrium problems with generalized monotone bifunctions[J]. Journal of Optimization Theory and Applications,1997,92: 527-542.
    [4] CHEN C R, LI S J, FANG Z M. On the solution semicontinuity to a parametric generalized vector quasivariational inequality[J]. Computers & Mathematics With Applications,2010,60(8): 2417-2425.
    [5] 曾静, 彭再云, 张石生. 广义强向量拟平衡问题解的存在性和Hadamard适定性[J]. 应用数学和力学, 2015,36(6): 651-658.(ZENG Jing, PENG Zaiyun, ZHANG Shisheng. Existence and Hadamard well-posedness of solutions to generalized strong vector quasi-equilibrium problems[J]. Applied Mathematics and Mechanics,2015,36(6): 651-658.(in Chinese))
    [6] 彭建文, 杨新民, 朱道立. 向量拟平衡问题系统及其应用[J]. 应用数学和力学, 2006,27(8): 963-970.(PENG Jianwen, YANG Xinmin, ZHU Daoli. System of vector quasi-equilibrium problems and its applications[J]. Applied Mathematics and Mechanics,2006,27(8): 963-970.(in Chinese))
    [7] GONG X H. Continuity of the solution set to parametric weak vector equilibrium problems[J]. Journal of Optimization Theory and Applications,2008,139: 35-46.
    [8] PENG Z Y, YANG X M. Semicontinuity of the solution mappings to weak generalized parametric Ky Fan inequality problems with trifunctions[J]. Optimization,2014,63(1): 447-457.
    [9] PENG Z Y, ZHAO Y, YANG X M. Semicontinuity of approximate solution mappings toparametric set-valued weak vector equilibrium problems[J]. Numerical Functional Analysis and Optimization,2015,36: 481-500.
    [10] PENG Z Y, PENG J W, LONG X J, et al. On the stability of solutions for semi-infinite vector optimization problems[J]. Journal of Global Optimization,2018,70: 55-69.
    [11] ZHAO J. The lower semicontinuity of optimal solution sets[J]. Journal of Mathematical Analysis and Applications,1997,207(1): 240-254.
    [12] ZHONG R Y, HUANG N J. On the stability of solution mapping for parametric generalized vector quasiequilibrium problems[J]. Computers & Mathematics With Applications,2012,63(4): 807-815.
    [13] ANH L Q, HUNG N V. Gap functions and Hausdorff continuity of solution mapping to parametric strong vector quasiequilibrium problem[J]. Journal of Industrial and Management Optimization,2018,14(1): 65-79.
    [14] 邵重阳, 彭再云, 王泾晶, 等. 参数广义弱向量拟平衡问题解映射的H-连续性刻画[J]. 应用数学和力学, 2019,40(4): 452-462.(SHAO Chongyang, PENG Zaiyun, WANG Jingjing, et al. Characterizations of H-continuity for solution mapping to parametric generalized weak vector quasi-equilibrium problems[J]. Applied Mathematics and Mechanics,2019,40(4): 452-462.(in Chinese))
    [15] ANH L Q, TRAN Q D, DINH V H. Stability for parametric vector quasi-equilibrium problems with variable cones[J]. Numerical Functional Analysis and Optimization,2019,40(4): 461-483.
    [16] CHEN C R, ZHOU X, LI F, et al. Vector equilibrium problems under improvement sets and linear scalarization with stability applications[J]. Optimization Methods and Software,2016,31(6): 1240-1257.
    [17] WANG J J, PENG Z Y, LIN Z, et al. On the stability of solutions for the generalized vector quasi-equilibrium problems via free-disposal set[J]. Journal of Industrial and Management Optimization,2019,40(4): 461-483.
    [18] CHICCO M, MIGNANEGO F, PUSILLO L, et al. Vector optimization problem via improvement sets[J]. Journal of Optimization Theory and Applications,2011,150: 516-529.
    [19] AUBIN J P, EKELAND I. Applied Nonlinear Analysis [M]. New York: John Wiley and Sons, 1984.
    [20] GPFERT A, RIAHI H, TAMMER C, et al. Variational Methods in Partially Ordered Spaces [M]. Berlin: Springer, 2003.
  • 加载中
计量
  • 文章访问数:  1217
  • HTML全文浏览量:  169
  • PDF下载量:  370
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-14
  • 修回日期:  2019-12-17
  • 刊出日期:  2020-08-01

目录

    /

    返回文章
    返回