留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

薄板热力耦合的屈曲分析

李若愚 王天宏

李若愚, 王天宏. 薄板热力耦合的屈曲分析[J]. 应用数学和力学, 2020, 41(8): 877-886. doi: 10.21656/1000-0887.400308
引用本文: 李若愚, 王天宏. 薄板热力耦合的屈曲分析[J]. 应用数学和力学, 2020, 41(8): 877-886. doi: 10.21656/1000-0887.400308
LI Ruoyu, WANG Tianhong. Thermo-Mechanical Buckling Analysis of Thin Plates[J]. Applied Mathematics and Mechanics, 2020, 41(8): 877-886. doi: 10.21656/1000-0887.400308
Citation: LI Ruoyu, WANG Tianhong. Thermo-Mechanical Buckling Analysis of Thin Plates[J]. Applied Mathematics and Mechanics, 2020, 41(8): 877-886. doi: 10.21656/1000-0887.400308

薄板热力耦合的屈曲分析

doi: 10.21656/1000-0887.400308
详细信息
    作者简介:

    李若愚(1994—),男,博士生(通讯作者. E-mail: 412364086@qq.com);王天宏(1968—),男,教授,博士.

  • 中图分类号: O343.9

Thermo-Mechanical Buckling Analysis of Thin Plates

  • 摘要: 基于Rayleigh-Ritz理论,采用有限元方法,推导了薄板在热力耦合载荷作用下屈曲临界载荷的表达式.假设力载荷与热载荷同时加载,采用MATLAB编译环境编写的有限元程序求解薄板结构在热力耦合载荷作用下的屈曲临界载荷.在做屈曲分析时,热载荷以温度场的形式施加到节点上.采用非均匀温度场加载,分析力载荷分量与热载荷分量对薄板结构失稳的影响.研究结果表明随着给定温度载荷、力载荷的增加或者降低,临界载荷随之增加或者降低,它们几乎呈线性变化.
  • [1] NGUYEN N D, NGUYEN T K, NGUYEN T N, et al. New Ritz-solution shape functions for analysis of thermo-mechanical buckling and vibration of laminated composite beams[J]. Composite Structures,2018,184(15): 452-460.
    [2] SABZIKAR M, BOROUJERD Y. Thermal buckling of piezo-FGM shallow spherical shells[J]. Mechanica,2013,48(4): 887-899.
    [3] 洪杰. 火焰筒结构局部热屈曲分析方法[J]. 北京航空航天大学学报, 2010,36(2): 248-252.(HONG Jie. Local thermal buckling analysis method of combustor liner[J]. Journal of Beijing University of Aeronautics and Astronautics,2010,36(2): 248-252.(in Chinese))
    [4] 袁武, 王曦, 宋宏伟, 等. 轻质金属点阵夹层板热屈曲临界温度分析[J]. 固体力学学报, 2014,35(1): 1-7.(YUAN Wu, WANG Xi, SONG Hongwei, et al. Thermal buckling and its critical temperature analysis of sandwich panels with metal-truss core[J]. Chinese Journal of Solid Mechanics,2014,35(1): 1-7.(in Chinese))
    [5] 李忱, 田雪坤, 王海任, 等. 薄球壳在均布外压与温度耦合作用下的热屈曲研究[J]. 应用数学和力学, 2015,36(9): 924-935.(LI Zhen, TIAN Xuekun, WAGN Hairen, et al. Study on thermal buckling of thin spherical shell under the coupling of reuniform external pressure and temperature[J]. Applied Mathematics and Mechanics,2015,36(9): 924-935.(in Chinese))
    [6] 夏巍, 赵东伟, 冯宇鹏. 基于Mindlin横剪变形理论的功能梯度板热屈曲分析[J]. 应用力学学报, 2016,33(1): 13-18.(XIA Wei, ZHAO Dongwei, FENG Yupeng. Thermal buckling analysis of functionally graded plates based on Mindlin’s transverse shear deformation theory[J]. Chines Journal of Applied Mechanics,2016,33(1): 13-18.(in Chinese))
    [7] 朱永安, 王璠, 刘人怀. 考虑横向剪切的对称圆柱正交异性层合扁球壳的热屈曲[J]. 应用数学和力学, 2008,29(3): 263-271.(ZHU Yongan, WANG Fan, LIU Renhuai. Thermal buckling of axisymmetrically laminated cylindrically orthotropic shallow spherical shells including transverse shear[J]. Applied Mathematics and Mechanics,2008,29(3): 263-271.(in Chinese))
    [8] 吴晓, 赵均海, 黄志刚. 双模量材料圆板热弯曲及热屈曲的研究[J]. 应用力学学报, 2015,32(4): 549-555.(WU Xiao, ZHAO Junhai, HUANG Zhigang. Study on thermal bending and thermal buckling of circular plates with double modulus materials[J]. Chinese Journal of Applied Mechanics,2015,32(4): 549-555.(in Chinese))
    [9] 彭凡, 顾勇军. 热环境中功能梯度圆柱薄壳分岔屈曲的边界约束效应[J]. 固体力学学报, 2011,32(5): 475-482.(PENG Fan, GU Yongjun. Effect of boundary constraints on bifurcation buckling of functionally graded material circular cylindrical shells in thermal environment[J]. Acta Mechanica Solida Sinica,2011,32(5): 475-482.(in Chinese))
    [10] KOCATURK T, AKBAS S D. Post-buckling analysis of Timoshenko beams made of functionally graded material under thermal loading[J]. Structural Engineering and Mechanics,2012,41(6): 775-789.
    [11] LEVYAKOV S V. Elastica solution for thermal bending of a functionally graded beam[J]. Acta Mechanica,2013,224(8): 1731-1740.
    [12] JABERZADEH E, AZHARI M, BOROOMAND B. Thermal buckling of functionally graded skew and trapezoidal plates with different boundary conditions using the element-free Galerkin method[J]. European Journal of Mechanics A: Solids,2013,42: 18-26.
    [13] Rokhlin S I, Wang Y J. Analysis of boundary conditions for elastic wave interaction with an interface between two solids[J].The Journal of the Acoustical Society of America,1991,89(2): 503-515.
    [14] SUN L X, HSU T R. Thermal buckling of laminated composite plates with transverse shear deformation[J]. Computers & Structures,1990,36(5): 883-889.
    [15] CHANG J S. FEM analysis of buckling and thermal buckling of antisymmetric angle-ply laminates according to transverse shear and normal deformable high order displacement theory[J]. Computers & Structures,1990,37(6): 925-946.
  • 加载中
计量
  • 文章访问数:  1726
  • HTML全文浏览量:  282
  • PDF下载量:  423
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-14
  • 修回日期:  2020-01-05
  • 刊出日期:  2020-08-01

目录

    /

    返回文章
    返回