[1] |
NGUYEN N D, NGUYEN T K, NGUYEN T N, et al. New Ritz-solution shape functions for analysis of thermo-mechanical buckling and vibration of laminated composite beams[J]. Composite Structures,2018,184(15): 452-460.
|
[2] |
SABZIKAR M, BOROUJERD Y. Thermal buckling of piezo-FGM shallow spherical shells[J]. Mechanica,2013,48(4): 887-899.
|
[3] |
洪杰. 火焰筒结构局部热屈曲分析方法[J]. 北京航空航天大学学报, 2010,36(2): 248-252.(HONG Jie. Local thermal buckling analysis method of combustor liner[J]. Journal of Beijing University of Aeronautics and Astronautics,2010,36(2): 248-252.(in Chinese))
|
[4] |
袁武, 王曦, 宋宏伟, 等. 轻质金属点阵夹层板热屈曲临界温度分析[J]. 固体力学学报, 2014,35(1): 1-7.(YUAN Wu, WANG Xi, SONG Hongwei, et al. Thermal buckling and its critical temperature analysis of sandwich panels with metal-truss core[J]. Chinese Journal of Solid Mechanics,2014,35(1): 1-7.(in Chinese))
|
[5] |
李忱, 田雪坤, 王海任, 等. 薄球壳在均布外压与温度耦合作用下的热屈曲研究[J]. 应用数学和力学, 2015,36(9): 924-935.(LI Zhen, TIAN Xuekun, WAGN Hairen, et al. Study on thermal buckling of thin spherical shell under the coupling of reuniform external pressure and temperature[J]. Applied Mathematics and Mechanics,2015,36(9): 924-935.(in Chinese))
|
[6] |
夏巍, 赵东伟, 冯宇鹏. 基于Mindlin横剪变形理论的功能梯度板热屈曲分析[J]. 应用力学学报, 2016,33(1): 13-18.(XIA Wei, ZHAO Dongwei, FENG Yupeng. Thermal buckling analysis of functionally graded plates based on Mindlin’s transverse shear deformation theory[J]. Chines Journal of Applied Mechanics,2016,33(1): 13-18.(in Chinese))
|
[7] |
朱永安, 王璠, 刘人怀. 考虑横向剪切的对称圆柱正交异性层合扁球壳的热屈曲[J]. 应用数学和力学, 2008,29(3): 263-271.(ZHU Yongan, WANG Fan, LIU Renhuai. Thermal buckling of axisymmetrically laminated cylindrically orthotropic shallow spherical shells including transverse shear[J]. Applied Mathematics and Mechanics,2008,29(3): 263-271.(in Chinese))
|
[8] |
吴晓, 赵均海, 黄志刚. 双模量材料圆板热弯曲及热屈曲的研究[J]. 应用力学学报, 2015,32(4): 549-555.(WU Xiao, ZHAO Junhai, HUANG Zhigang. Study on thermal bending and thermal buckling of circular plates with double modulus materials[J]. Chinese Journal of Applied Mechanics,2015,32(4): 549-555.(in Chinese))
|
[9] |
彭凡, 顾勇军. 热环境中功能梯度圆柱薄壳分岔屈曲的边界约束效应[J]. 固体力学学报, 2011,32(5): 475-482.(PENG Fan, GU Yongjun. Effect of boundary constraints on bifurcation buckling of functionally graded material circular cylindrical shells in thermal environment[J]. Acta Mechanica Solida Sinica,2011,32(5): 475-482.(in Chinese))
|
[10] |
KOCATURK T, AKBAS S D. Post-buckling analysis of Timoshenko beams made of functionally graded material under thermal loading[J]. Structural Engineering and Mechanics,2012,41(6): 775-789.
|
[11] |
LEVYAKOV S V. Elastica solution for thermal bending of a functionally graded beam[J]. Acta Mechanica,2013,224(8): 1731-1740.
|
[12] |
JABERZADEH E, AZHARI M, BOROOMAND B. Thermal buckling of functionally graded skew and trapezoidal plates with different boundary conditions using the element-free Galerkin method[J]. European Journal of Mechanics A: Solids,2013,42: 18-26.
|
[13] |
Rokhlin S I, Wang Y J. Analysis of boundary conditions for elastic wave interaction with an interface between two solids[J].The Journal of the Acoustical Society of America,1991,89(2): 503-515.
|
[14] |
SUN L X, HSU T R. Thermal buckling of laminated composite plates with transverse shear deformation[J]. Computers & Structures,1990,36(5): 883-889.
|
[15] |
CHANG J S. FEM analysis of buckling and thermal buckling of antisymmetric angle-ply laminates according to transverse shear and normal deformable high order displacement theory[J]. Computers & Structures,1990,37(6): 925-946.
|