留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有Holling Ⅳ型功能反应捕食系统的状态反馈控制

王小娥 蔺小林 李建全

王小娥, 蔺小林, 李建全. 具有Holling Ⅳ型功能反应捕食系统的状态反馈控制[J]. 应用数学和力学, 2020, 41(12): 1369-1380. doi: 10.21656/1000-0887.400314
引用本文: 王小娥, 蔺小林, 李建全. 具有Holling Ⅳ型功能反应捕食系统的状态反馈控制[J]. 应用数学和力学, 2020, 41(12): 1369-1380. doi: 10.21656/1000-0887.400314
WANG Xiaoe, LIN Xiaolin, LI Jianquan. State Feedback Control of Predator-Prey Systems With Holling Ⅳ Functional Responses[J]. Applied Mathematics and Mechanics, 2020, 41(12): 1369-1380. doi: 10.21656/1000-0887.400314
Citation: WANG Xiaoe, LIN Xiaolin, LI Jianquan. State Feedback Control of Predator-Prey Systems With Holling Ⅳ Functional Responses[J]. Applied Mathematics and Mechanics, 2020, 41(12): 1369-1380. doi: 10.21656/1000-0887.400314

具有Holling Ⅳ型功能反应捕食系统的状态反馈控制

doi: 10.21656/1000-0887.400314
基金项目: 国家自然科学基金(11971281)
详细信息
    作者简介:

    王小娥(1993—),女,硕士生(E-mail: 1255013427@qq.com);蔺小林(1961—),男,博士(通讯作者. E-mail: linxl@sust.edu.cn).

  • 中图分类号: O175

State Feedback Control of Predator-Prey Systems With Holling Ⅳ Functional Responses

Funds: The National Natural Science Foundation of China(11971281)
  • 摘要: 研究了一类具有Holling Ⅳ型功能反应和状态反馈控制的捕食模型,利用相似的Poincaré准则和半连续动力系统几何理论,得到了半平凡周期解稳定和阶1周期解存在的充分条件.数值模拟验证了结论的正确性和状态反馈控制的有效性.同时,数值模拟揭示了状态反馈控制系统存在着丰富的动力学行为,比如fold分岔、flip分岔和混沌现象.
  • [1] 马知恩. 种群生态学的数学建模与研究[M]. 合肥: 安徽教育出版社, 1996.(MA Zhien. Mathematical Modeling and Research of Population Ecology[M]. Hefei: Anhui Education Press, 1996.(in Chinese))
    [2] LIU X X, HUANG Q D. The dynamics of a harvested predator-prey system with Holling type Ⅳ functional response[J]. Biosystems,2018,169/170: 26-39.
    [3] LAJMIRI Z, KHOSHSIAR G R, ORAK I. Bifurcation and stability analysis of a ratio-dependent predator-prey model with predator harvesting rate[J]. Chaos, Solitons & Fractals,2018,106: 193-200.
    [4] SEN M, SRINIVASU P D N, BANERJEE M. Global dynamics of an additional food provided predator-prey system with constant harvest in predators[J]. Applied Mathematics and Computation,2015,250: 193-211.
    [5] LI S Y, XIONG Z L, WANG X. The study of a predator-prey system with group defense and impulsive control strategy[J]. Applied Mathematical Modelling,2010,34(9): 2546-2561.
    [6] TIAN Y, TANG S Y, CHEKEC R A. Dynamic complexity of a predator-prey model for IPM with nonlinear impulsive control incorporating a regulatory factor for predator releases[J]. Mathematical Modelling and Analysis,2019,24(1): 134-154.
    [7] 焦建军, 陈兰荪, J·J·尼托, 等. 连续收获捕食者与脉冲存放食饵的阶段结构捕食-食饵模型的全局吸引和一致持久[J]. 应用数学和力学, 2008,29(5): 589-600.(JIAO Jianjun, CHEN Lansun, NIETO J J, et al. Permanence and global attractivity of a stage-structured predator-prey model with continuous harvesting on predator and impulsive stocking on prey[J]. Applied Mathematics and Mechanics,2008,29(5): 589-600.(in Chinese))
    [8] 蒋贵荣, 刘期怀, 龙腾飞, 等. 脉冲动力系统的分岔混沌理论及其应用[M]. 北京: 科学出版社, 2015.(JIANG Guirong, LIU Qihuai, LONG Tengfei, et al. Bifurcation Chaos Theory of Impulsive Dynamic Systems and Application [M]. Beijing: Science Press, 2015.(in Chinese))
    [9] YANG J, TANG G Y, TANG S Y. Holling-Tanner predator-prey model with state-dependent feedback control[J]. Discrete Dynamics in Nature and Society,2018. DOI: 10.1155/2018/3467405.
    [10] HE Z M. Impulsive state feedback control of a predator-prey system with group defense[J]. Nonlinear Dynamics,2015,79(4): 2699-2714.
    [11] 钱临宁, 陆启韶. 一类自治脉冲微分方程的动力学研究[J]. 动力学与控制学报, 2008,6(2): 97-101.(QIAN Linning, LU Qishao. Dynamics of a class of autonomous impulsive equations[J]. Journal of Dynamics and Control,2008,6(2): 97-101.(in Chinese))
    [12] 白露, 刘琼, 陈武大仁. 一类捕食-食饵系统的状态依赖反馈控制模型[J]. 应用数学进展, 2018, 7(10): 1340-1348.(BAI Lu, LIU Qing, CHEN Wudaren. A predator-prey model with state-dependent feedback control[J]. Advances in Applied Mathematics,2018, 7(10): 1340-1348.(in Chinese))
    [13] LIANG Z Q, ZENG X P, PANG G P, et al. Periodic solution of a Leslie predator-prey system with ratio-dependent and state impulsive feedback control[J]. Nonlinear Dynamics,2017,89(4): 2941-2955.
    [14] ZHOU Z W, LIANG Z Q, ZENG X P, et al. Periodic solution of Holling-Tanner model with impulsive state feedback control[J]. Mathematica Applicata,2017,30(3): 576-588.
    [15] HUANG J C, XIAO D M. Analyses of bifurcations and stability in a predator-prey system with Holling type-Ⅳ functional response[J]. Acta Mathematicae Applicatae Sinica,2004, 20(1): 167-178.
    [16] 陈兰荪. 害虫治理与半连续动力系统几何理论[J]. 北华大学学报(自然科学版), 2011,12(1): 1-9.(CHEN Lansun. Pest control and geometric theory of semi-continuous dynamical system[J]. Journal of Beihua University (Natural Science),2011,12(1): 1-9.(in Chinese))
    [17] 张建树. 前沿与交叉科学-混沌生物学[M]. 西安: 陕西科学技术出版社, 1998.(ZHANG Jianshu. Frontiers and Crossover Science-Chaos Biology [M]. Xi’an: Shaanxi Science and Technology Press, 1998.(in Chinese))
  • 加载中
计量
  • 文章访问数:  1260
  • HTML全文浏览量:  274
  • PDF下载量:  1074
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-05
  • 修回日期:  2020-05-16
  • 刊出日期:  2020-12-01

目录

    /

    返回文章
    返回