[1] |
马知恩. 种群生态学的数学建模与研究[M]. 合肥: 安徽教育出版社, 1996.(MA Zhien. Mathematical Modeling and Research of Population Ecology[M]. Hefei: Anhui Education Press, 1996.(in Chinese))
|
[2] |
LIU X X, HUANG Q D. The dynamics of a harvested predator-prey system with Holling type Ⅳ functional response[J]. Biosystems,2018,169/170: 26-39.
|
[3] |
LAJMIRI Z, KHOSHSIAR G R, ORAK I. Bifurcation and stability analysis of a ratio-dependent predator-prey model with predator harvesting rate[J]. Chaos, Solitons & Fractals,2018,106: 193-200.
|
[4] |
SEN M, SRINIVASU P D N, BANERJEE M. Global dynamics of an additional food provided predator-prey system with constant harvest in predators[J]. Applied Mathematics and Computation,2015,250: 193-211.
|
[5] |
LI S Y, XIONG Z L, WANG X. The study of a predator-prey system with group defense and impulsive control strategy[J]. Applied Mathematical Modelling,2010,34(9): 2546-2561.
|
[6] |
TIAN Y, TANG S Y, CHEKEC R A. Dynamic complexity of a predator-prey model for IPM with nonlinear impulsive control incorporating a regulatory factor for predator releases[J]. Mathematical Modelling and Analysis,2019,24(1): 134-154.
|
[7] |
焦建军, 陈兰荪, J·J·尼托, 等. 连续收获捕食者与脉冲存放食饵的阶段结构捕食-食饵模型的全局吸引和一致持久[J]. 应用数学和力学, 2008,29(5): 589-600.(JIAO Jianjun, CHEN Lansun, NIETO J J, et al. Permanence and global attractivity of a stage-structured predator-prey model with continuous harvesting on predator and impulsive stocking on prey[J]. Applied Mathematics and Mechanics,2008,29(5): 589-600.(in Chinese))
|
[8] |
蒋贵荣, 刘期怀, 龙腾飞, 等. 脉冲动力系统的分岔混沌理论及其应用[M]. 北京: 科学出版社, 2015.(JIANG Guirong, LIU Qihuai, LONG Tengfei, et al. Bifurcation Chaos Theory of Impulsive Dynamic Systems and Application [M]. Beijing: Science Press, 2015.(in Chinese))
|
[9] |
YANG J, TANG G Y, TANG S Y. Holling-Tanner predator-prey model with state-dependent feedback control[J]. Discrete Dynamics in Nature and Society,2018. DOI: 10.1155/2018/3467405.
|
[10] |
HE Z M. Impulsive state feedback control of a predator-prey system with group defense[J]. Nonlinear Dynamics,2015,79(4): 2699-2714.
|
[11] |
钱临宁, 陆启韶. 一类自治脉冲微分方程的动力学研究[J]. 动力学与控制学报, 2008,6(2): 97-101.(QIAN Linning, LU Qishao. Dynamics of a class of autonomous impulsive equations[J]. Journal of Dynamics and Control,2008,6(2): 97-101.(in Chinese))
|
[12] |
白露, 刘琼, 陈武大仁. 一类捕食-食饵系统的状态依赖反馈控制模型[J]. 应用数学进展, 2018, 7(10): 1340-1348.(BAI Lu, LIU Qing, CHEN Wudaren. A predator-prey model with state-dependent feedback control[J]. Advances in Applied Mathematics,2018, 7(10): 1340-1348.(in Chinese))
|
[13] |
LIANG Z Q, ZENG X P, PANG G P, et al. Periodic solution of a Leslie predator-prey system with ratio-dependent and state impulsive feedback control[J]. Nonlinear Dynamics,2017,89(4): 2941-2955.
|
[14] |
ZHOU Z W, LIANG Z Q, ZENG X P, et al. Periodic solution of Holling-Tanner model with impulsive state feedback control[J]. Mathematica Applicata,2017,30(3): 576-588.
|
[15] |
HUANG J C, XIAO D M. Analyses of bifurcations and stability in a predator-prey system with Holling type-Ⅳ functional response[J]. Acta Mathematicae Applicatae Sinica,2004, 20(1): 167-178.
|
[16] |
陈兰荪. 害虫治理与半连续动力系统几何理论[J]. 北华大学学报(自然科学版), 2011,12(1): 1-9.(CHEN Lansun. Pest control and geometric theory of semi-continuous dynamical system[J]. Journal of Beihua University (Natural Science),2011,12(1): 1-9.(in Chinese))
|
[17] |
张建树. 前沿与交叉科学-混沌生物学[M]. 西安: 陕西科学技术出版社, 1998.(ZHANG Jianshu. Frontiers and Crossover Science-Chaos Biology [M]. Xi’an: Shaanxi Science and Technology Press, 1998.(in Chinese))
|