留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Schwarz-Christoffel变换的曲流河井位映射计算

张光生 王玉风 姬安召 刘雪芬 陈占军

张光生, 王玉风, 姬安召, 刘雪芬, 陈占军. 基于Schwarz-Christoffel变换的曲流河井位映射计算[J]. 应用数学和力学, 2020, 41(7): 771-785. doi: 10.21656/1000-0887.400315
引用本文: 张光生, 王玉风, 姬安召, 刘雪芬, 陈占军. 基于Schwarz-Christoffel变换的曲流河井位映射计算[J]. 应用数学和力学, 2020, 41(7): 771-785. doi: 10.21656/1000-0887.400315
ZHANG Guangsheng, WANG Yufeng, JI Anzhao, LIU Xuefen, CHEN Zhanjun. Mapping Calculation of Meandering River Well Locations Based on the Schwarz-Christoffel Transform[J]. Applied Mathematics and Mechanics, 2020, 41(7): 771-785. doi: 10.21656/1000-0887.400315
Citation: ZHANG Guangsheng, WANG Yufeng, JI Anzhao, LIU Xuefen, CHEN Zhanjun. Mapping Calculation of Meandering River Well Locations Based on the Schwarz-Christoffel Transform[J]. Applied Mathematics and Mechanics, 2020, 41(7): 771-785. doi: 10.21656/1000-0887.400315

基于Schwarz-Christoffel变换的曲流河井位映射计算

doi: 10.21656/1000-0887.400315
基金项目: 甘肃省高等学校科研项目(2017B-61);甘肃省工业和信息化厅绿色低碳转型升级课题(GGLD-2019-060)
详细信息
    作者简介:

    张光生(1981—),男,讲师,硕士(通讯作者. E-mail: 24066932@qq.com).

  • 中图分类号: TE312

Mapping Calculation of Meandering River Well Locations Based on the Schwarz-Christoffel Transform

  • 摘要: 曲流河改道、改向使得沉积储层物性沿着河道延伸方向进行分布,常规地质统计学方法在储层参数预测时,依赖于变差函数的变程和方向.根据Schwarz-Christoffel变换基本原理,建立了多边形区域映射到矩形区域保形映射的数学模型,提出了映射数学模型的数值计算方法.在整个映射过程中,需要借助带状过渡区域.从多边形区域到带状过渡区域映射的计算过程中,采用二维粒子群优化(PSO)算法的基本原理,得到带状过渡区域的初始化点位.根据映射数学模型及边界映射结果,以带状过渡区域中的初始化点位为积分终点,以初始化点位距带状过渡区域边界的最近点为积分起点.采用Gauss-Jacobi积分方法得到多边形区域中的计算点位.以实际与计算点位的误差平方和作为目标函数,采用PSO算法得到带状过渡区域中的计算点位.在带状过渡区域映射到矩形区域过程中,根据带状过渡区域到矩形区域映射变换尺度的对应规则,提出了矩形区域中点位的初始化方法.采用Newton法对Jacobi椭圆函数进行求解得到矩形区域的映射点位.为了验证模型的可靠性,以鄂尔多斯盆地曲流河沉积的X砂岩油藏为例,选择了研究区域的38口直井进行分析,得出映射前后的井位保持了一定的几何相似性.因此通过Schwarz-Christoffel映射变换,可以将曲流河沿着河道方向映射到矩形的一个方向,从而为复杂曲流河沉积储层的地质建模变换到矩形区域进行研究提供了一定的理论基础.
  • [1] 单敬福, 张吉, 赵忠军, 等. 地下曲流河点坝砂体沉积演化过程分析: 以吉林油田杨大城子油层第23小层为例[J]. 石油学报, 2015,36(7): 809-819.(SHAN Jingfu, ZHANG Ji, ZHAO Zhongjun, et al. Analysis of sedimentary and evolution process for underground meandering river point bar: a case study from number 23 thin layer of Yangdachengzi oil reservoir in Jilin oilfield[J]. Acta Petrolei Sinica,2015,36(7): 809-819.(in Chinese))
    [2] 范峥, 吴胜和, 岳大力, 等. 曲流河点坝内部构型的嵌入式建模方法研究[J]. 中国石油大学学报(自然科学版), 2012,36(3): 1-6.(FAN Zheng, WU Shenghe, YUE Dali, et al. Embedding modeling method for internal architecture of point bar sand body in meandering river reservoir[J]. Journal of China University of Petroleum(Edition of Natural Science),2012,36(3): 1-6.(in Chinese))
    [3] 刘可可, 侯加根, 刘钰铭, 等. 多点地质统计学在点坝内部构型三维建模中的应用[J]. 石油与天然气地质, 2016,37(4): 577-583.(LIU Keke, HOU Jiagen, LIU Yuming, et al. Application of multiple-point geostatistics in 3D internal architecture modeling of point bar[J]. Oil and Gas Geology,2016,37(4): 577-583.(in Chinese))
    [4] 白振强, 王清华, 杜庆龙, 等. 曲流河砂体三维构型地质建模及数值模拟研究[J]. 石油学报, 2009,30(6): 898-902, 907.(BAI Zhenqiang, WANG Qinghua, DU Qinglong, et al. Study on 3D architecture geology modeling and digital simulation in meandering reservoir[J]. Acta Petrolei Sinica,2009,30(6): 898-902, 907.(in Chinese))
    [5] 邹拓, 吴淑艳, 陈晓智, 等. 曲流河点坝内部超精细建模研究: 以港东油田一区一断块为例[J]. 天然气地球科学, 2012,23(6): 1163-1169.(ZOU Tuo, WU Shuyan, CHEN Xiaozhi, et al. Super-fine modeling of the inner point bar of meandering river: a case study on the fault one of area Ⅰ in eastern Dagang oilfield[J]. Natural Gas Geoscience,2012,23(6): 1163-1169.(in Chinese))
    [6] COSTAMAGNA E, FANNI A. Analysis of rectangular coaxial structures by numerical inversion of the Schwarz-Christoffel transformation[J]. IEEE Transactions on Magnetics,1992,28(2): 1454-1457.
    [7] COSTAMAGNA E. A new approach to standard Schwarz-Christoffel formula calculations[J]. Microwave and Optical Technology Letters,2002,32(3): 196-199.
    [8] HOWELL L H, TREFETHEN L N. A modified Schwarz-Christoffel transformation for elongated regions[J]. SIAM Journal on Scientific and Statistical Computing,1990,11(5): 928-949.
    [9] DRISCOLL T A. Algorithm 843: improvements to the Schwarz-Christoffel toolbox for MATALAB[J]. ACM Transactions on Mathematical Software,2005,31(2): 239-251.
    [10] NATARAJAN S, BORDAS S, MAHAPATRA D R. Numerical integration over arbitrary polygonal domains based on Schwarz-Christoffel conformal mapping[J]. International Journal for Numerical Methods in Engineering,2009,80(1): 103-134.
    [11] CROWDY D. The Schwarz-Christoffel mapping to bounded multiply connected polygonal domains[J]. Proceedings of the Royal Society,2005,146(2061): 2653-2678.
    [12] 王玉风, 姬安召, 崔建斌. 矩形到任意多边形区域的Schwarz-Christoffel变换数值解法[J]. 应用数学和力学, 2019,40(1): 75-88.(WANG Yufeng, JI Anzhao, CUI Jianbin. Numerical solution of Schwarz-Christoffel transformation from rectangles to arbitrary polygonal domains[J]. Applied Mathematics and Mechanics,2019,40(1): 75-88.(in Chinese))
    [13] 崔建斌, 姬安召, 王玉风, 等. 单位圆到任意多边形区域的Schwarz Christoffel变换数值解法[J]. 浙江大学学报(理学版), 2017,44(2): 161-167.(CUI Jianbin, JI Anzhao, WANG Yufeng, et al. Numerical solution method for Schwarz Christoffel transformation from unit circle to arbitrary polygon area[J]. Journal of Zhejiang University(Science Edition),2017,44(2): 161-167.(in Chinese))
    [14] 陈汉武, 朱建锋, 阮越, 等. 带交叉算子的量子粒子群优化算法[J]. 东南大学学报(自然科学版), 2016,46(1): 23-29.(CHEN Hanwu, ZHU Jianfeng, RUAN Yue, et al. Quantum particle swarm optimization algorithm with crossover operator[J]. Journal of Southeast University(Natural Science Edition),2016,46(1): 23-29.(in Chinese))
    [15] 田瑾. 高维多峰函数的量子行为粒子群优化算法改进研究[J]. 控制与决策, 2016,31(11): 1967-1972.(TIAN Jin. Improvement of quantum-behaved particle swarm optimization algorithm for high-dimensional and multi-modal functions[J]. Control and Decision,2016,31(11): 1967-1972.(in Chinese))
    [16] 程林辉, 钟洛. 求解多峰函数优化问题的并行免疫遗传算法[J]. 微电子学与计算机, 2015,32(5): 117-121.(CHENG Linhui, ZHONG Luo. A parallel immune genetic algorithm for multimodal function optimization problem[J]. Microelectronics and Computer,2015,32(5): 117-121.(in Chinese))
    [17] 高岳林, 余雅萍. 基于混合量子粒子群优化的投资组合模型及实证分析[J]. 工程数学学报, 2017,34(1): 21-30.(GAO Yuelin, YU Yaping. Portfolio model based on hybrid quantum particle swarm optimization with empirical research[J]. Chinese Journal of Engineering Mathematics,2017,34(1): 21-30.(in Chinese))
    [18] ABRAMOWITZ M, STEGUNIA. Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables [M]. Washington DC: Dover Publications, 1996.
  • 加载中
计量
  • 文章访问数:  1379
  • HTML全文浏览量:  230
  • PDF下载量:  377
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-15
  • 修回日期:  2019-11-07
  • 刊出日期:  2020-07-01

目录

    /

    返回文章
    返回