留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分数阶混沌金融模型的时滞反馈控制策略

徐昌进 段振华

徐昌进, 段振华. 分数阶混沌金融模型的时滞反馈控制策略[J]. 应用数学和力学, 2020, 41(12): 1392-1404. doi: 10.21656/1000-0887.400323
引用本文: 徐昌进, 段振华. 分数阶混沌金融模型的时滞反馈控制策略[J]. 应用数学和力学, 2020, 41(12): 1392-1404. doi: 10.21656/1000-0887.400323
XU Changjin>, DUAN Zhenhua. A Delayed Feedback Control Method for Fractional-Order Chaotic Financial Models[J]. Applied Mathematics and Mechanics, 2020, 41(12): 1392-1404. doi: 10.21656/1000-0887.400323
Citation: XU Changjin>, DUAN Zhenhua. A Delayed Feedback Control Method for Fractional-Order Chaotic Financial Models[J]. Applied Mathematics and Mechanics, 2020, 41(12): 1392-1404. doi: 10.21656/1000-0887.400323

分数阶混沌金融模型的时滞反馈控制策略

doi: 10.21656/1000-0887.400323
基金项目: 国家自然科学基金(61673008);贵州省高层次创新型人才培养计划:百层次人才项目([2016]5651);
详细信息
    作者简介:

    徐昌进(1970—),男,教授, 博士(E-mail: xcj403@126.com);段振华(1964—),男,副教授(通讯作者. E-mail: gtxyjwc@163.com).

  • 中图分类号: O175.13

A Delayed Feedback Control Method for Fractional-Order Chaotic Financial Models

Funds: The National Natural Science Foundation of China(61673008)
  • 摘要: 该文研究了一类分数阶金融模型的混沌控制问题.运用时滞反馈控制法成功控制了金融模型的混沌行为,建立了该模型平衡点稳定及Hopf分支存在的充分条件,揭示了时滞和分数阶的阶数对该模型的稳定性和分支的影响.计算机模拟验证了理论分析的正确性,研究结果为维持金融稳定提供了理论依据.
  • [1] GAO Q, MA J H. Chaos and Hopf bifurcation of a finance system[J]. Nonlinear Dynamics,2009,58(1/2): 209-216.
    [2] ZHANG J G, NAN J, CHU Y D, et al. Stochastic Hopf bifurcation of a novel finance chaotic system[J]. Journal of Nonlinear Science and Applications,2016,9(5): 2727-2739.
    [3] 马军海, 陈予恕. 一类非线性金融系统分岔混沌拓扑结构与全局复杂性研究[J]. 应用数学和力学, 2001,22(11): 1119-1128.(MA Junhai, CHEN Yushu. Study for bifurcation topological structure and the global complicated character of a kind of non-linear finance system [J]. Applied Mathematics and Mechanics,2001,22(11): 1119-1128.(in Chinese))
    [4] 马军海, 陈予恕. 一类非线性金融系统分岔混沌拓扑结构与全局复杂性研究[J]. 应用数学和力学, 2001,22(12): 1236-1242.(MA Junhai, CHEN Yushu. Study for bifurcation topological structure and the global complicated character of a kind of non-linear finance system [J]. Applied Mathematics and Mechanics,2001,22(12): 1236-1242.(in Chinese))
    [5] ZHANG L L, CAI G L, FANG X L. Stability for a novel time-delay financial hyperchaotic system by adaptive periodically intermittent linear control[J]. Journal of Applied Analysis and Computation,2017, 7(1): 79-91.
    [6] 林勇新, 陈予恕, 曹庆杰. 一类金融系统行为的非线性混沌分析[J]. 应用数学和力学, 2010,31(10): 1239-1248.(LIN Yongxin, CHEN Yushu, CAO Qingjie. Nonlinear and chaotic analysis of a financial complex system[J]. Applied Mathematics and Mechanics,2010,31(10): 1239-1248.(in Chinese))
    [7] CAI G L, YAO L, HU P, et al. Adaptive full state hybrid function projective synchronization of financial hyperchaotic systems with uncertain parameters[J]. Discrete and Continuous Dynamical Systems(Series B),2013,18(8): 2019-2028.
    [8] MA J H, BANGURA H I. Complexity analysis research of financial and economic system under the condition of three parameters’ change circumstances[J]. Nonlinear Dynamics,2012,70(4): 2313-2326.
    [9] ABD-ELOUAHAB M S, HAMRI N E, WANG J W. Chaos control of a fractional-order financial system[J]. Mathematical Problems in Engineering,2010,2010: 270646. DOI: 10.1155/2010/270646.
    [10] HAJIPOUR A, TAVAKOLI H. Analysis and circuit simulation of a novel nonlinear fractional incommensurate order financial system[J]. Optik,2016,127(22): 10643-10652.
    [11] HUANG C D, CAI L M, CAO J D. Linear control for synchronization of fractional-order time-delayed chaotic financial system[J]. Chaos, Solitons & Fractals,2018,113: 326-332.
    [12] CHEN W C. Dynamics and control of a financial system with time-delayed feedbacks[J]. Chaos, Solitons & Fractals,2008,37: 1198-1207.
    [13] ZHANG X B, ZHUA H L. Hopf bifurcation and chaos of a delayed finance system[J]. Complexity,2019,2019: 6715036. DOI: 10.1155/2019/6715036.
    [14] ZHANG R Y. Bifurcation analysis for a kind of nonlinear finance system with delayed feedback and its application to control of chaos[J]. Journal of Applied Mathematics,2012,2012: 316390. DOI: 10.1155/2012/316390.
    [15] CHEN X L, LIU H H, XU C L. The new result on delayed finance system[J]. Nonlinear Dynamics,2014,78(3): 1989-1998.
    [16] MIRCEA G, NEAMTU M, BUNDAU O, et al. Uncertain and stochastic financial models with multiple delays[J]. International Journal of Bifurcation and Chaos,2012,22(6): 19.
    [17] 杜伟霞, 张思进, 殷珊. 一类对称碰撞系统的间歇混沌控制方法[J]. 应用数学和力学, 2018,39(10): 1149-1158.(DU Weixia, ZHANG Sijin, YIN Shan. An intermittent chaos control method for a class of symmetric impact systems[J]. Applied Mathematics and Mechanics,2018,39(10): 1149-1158.(in Chinese))
    [18] 张艳龙, 王丽, 石建飞. Duffing系统在双参数平面上的分岔演化过程[J]. 应用数学和力学, 2018,39(3): 324-333.(ZHANG Yanlong, WANG Li, SHI Jianfei. Bifurcation evolution of Duffing systems on 2-parameter planes[J]. Applied Mathematics and Mechanics,2018,39(3): 324-333.(in Chinese))
  • 加载中
计量
  • 文章访问数:  1675
  • HTML全文浏览量:  455
  • PDF下载量:  249
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-25
  • 修回日期:  2020-02-12
  • 刊出日期:  2020-12-01

目录

    /

    返回文章
    返回