留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Lévy噪声的混合时滞中立型神经网络自适应同步研究

顾凤蛟 高燕 任丽佳 马健武 陈玲琦

顾凤蛟, 高燕, 任丽佳, 马健武, 陈玲琦. 基于Lévy噪声的混合时滞中立型神经网络自适应同步研究[J]. 应用数学和力学, 2020, 41(11): 1259-1274. doi: 10.21656/1000-0887.400350
引用本文: 顾凤蛟, 高燕, 任丽佳, 马健武, 陈玲琦. 基于Lévy噪声的混合时滞中立型神经网络自适应同步研究[J]. 应用数学和力学, 2020, 41(11): 1259-1274. doi: 10.21656/1000-0887.400350
GU Fengjiao, GAO Yan, REN Lijia, MA Jianwu, CHEN Lingqi. Adaptive Synchronization of Neutral Neural Networks With Mixed Delays and Lévy Noises[J]. Applied Mathematics and Mechanics, 2020, 41(11): 1259-1274. doi: 10.21656/1000-0887.400350
Citation: GU Fengjiao, GAO Yan, REN Lijia, MA Jianwu, CHEN Lingqi. Adaptive Synchronization of Neutral Neural Networks With Mixed Delays and Lévy Noises[J]. Applied Mathematics and Mechanics, 2020, 41(11): 1259-1274. doi: 10.21656/1000-0887.400350

基于Lévy噪声的混合时滞中立型神经网络自适应同步研究

doi: 10.21656/1000-0887.400350
基金项目: 国家自然科学基金(61503238)
详细信息
    作者简介:

    顾凤蛟(1996—),女,硕士生(E-mail: 2548746829@qq.com);高燕(1985—),女,讲师,博士,硕士生导师(通讯作者. E-mail: gy@sues.edu.cn).

  • 中图分类号: O231

Adaptive Synchronization of Neutral Neural Networks With Mixed Delays and Lévy Noises

Funds: The National Natural Science Foundation of China(61503238)
  • 摘要: 研究了带有Lévy噪声的混合时滞随机中立型神经网络的自适应同步问题.Lévy噪声的提出,使得网络里的噪声干扰由Gauss过程和Poisson点过程两部分组成,同时包含了连续的扰动和不连续的突触噪声.通过建立新的Lyapunov泛函,使用It?s公式以及不等式分析方法,得到误差系统的稳定性条件,给出了反馈控制器的更新率,从而进一步保证响应系统和驱动系统的自适应同步.最后,提供了一个数值实例,通过MATLAB相关仿真,说明前文所得结果的正确性.
  • [1] BALASUBRAMANIAM P, MANIVANNAN A, RAKKIYAPPAN R. Exponential stability results for uncertain neutral systems with interval time-varying delays and Markovian jumping parameters[J]. Applied Mathematics and Computation,2010,216(11): 3396-3407.
    [2] LIU Y R, WANG Z, LIU X. Stability analysis for a class of neutral-type neural networks with Markovian jumping parameters and mode-dependent mixed delays[J]. Neurocomputing,2012,94(3): 46-53.
    [3] DAI A D, ZHOU W N, XU Y H, et al. Adaptive exponential synchronization in mean square for Markovian jumping neutral-type coupled neural networks with time-varying delays by pinning control[J]. Neurocomputing,2016,173(3): 809-818.
    [4] SAMIDURAI R, RAJAVEL S, SRIRAMAN R, et al. Novel results on stability analysis of neutral-type neural networks with additive time-varying delay components and leakage delay[J]. Automation and Systems,2017,15(4): 1888-1900.
    [5] ZHAO Y, GAO H, MOU S. Asymptotic stability analysis of neural networks with successive time delay components[J]. Neurocomputing,2008,71(13/15): 2848-2856.
    [6] PHAT V N, TRINH H. Exponential stabilization of neural networks with various activation functions and mixed time-varying delays[J]. IEEE Transactions on Neural Networks,2010,21(7): 1180-1184.
    [7] 舒含奇, 宋乾坤. 带有时滞的Clifford值神经网络的全局指数稳定性[J]. 应用数学和力学, 2017,38(5): 513-525. (SHU Hanqi, SONG Qiankun. Global stability of Clifford-valued recurrent neural networks with mixed time-varying delays[J]. Applied Mathematics and Mechanics,2017,38(5): 513-525. (in Chinese))
    [8] ZHOU W N, TONG D B, FANG J A. Adaptive synchronization for stochastic neural networks of neutral-type with mixed time-delays[J]. Neurocomputing,2013,99(1): 477-485.
    [9] ZHOU W N, TONG D B, GAO Y, et al. Mode and delay-dependent adaptive exponential synchronization in p th moment for stochastic delayed neural networks with Markovian switching[J]. IEEE Transactions on Neural Networks and Learning Systems,2012,23(4): 662-668.
    [10] 张玮玮, 陈定元, 吴然超, 等. 一类基于忆阻器分数阶时滞神经网络的修正投影同步[J]. 应用数学和力学, 2018,39(2): 239-248. (ZHANG Weiwei, CHEN Dingyuan, WU Ranchao, et al. Modified-projective-synchronization of memristor-based fractional-order delayed neural networks[J]. Applied Mathematics and Mechanics,2018,39(2): 239-248. (in Chinese))
    [11] HE W L, CAO J D. Adaptive synchronization of a class of chaotic neural networks with known or unknown parameters[J]. Physics Letters A,2007,372(4): 408-416.
    [12] CHEN C S, TSAI S H, TAML M, et al. Fuzzy adaptive control of two totally different chaotic systems with complicated structures by novel pragmatically adaptive control strategy[J]. Soft Computing,2017,21(22): 35-38.
    [13] 艾合麦提·麦麦提阿吉, 李洪利. 含分布时滞递归神经网络的一般衰减同步[J]. 应用数学和力学, 2019,40(11): 1204-1213. (MUHAMMADHAJI Ahmadjan, LI Hongli. General decay synchronization for recurrent neural networks with distributed time delays[J]. Applied Mathematics and Mechanics,2019,40(11): 1204-1213. (in Chinese))
    [14] WU Z, SHI P, SU H, et al. Stochastic synchronization of Markovian jump neural networks with time-varying delay using sampled-data[J]. IEEE Transactions on Cybernetics,2013,43(6): 1796-1806.
    [15] APPLEBAUM D, SIAKALLI M. Stochastic stabilization of dynamical systems using Lévy noise[J]. Stochastics and Dynamics,2010,10(4): 509-527.
    [16] PENG J, LIU Z M. Stability analysis of stochastic reaction-diffusion delayed neural networks with Lévy noise[J]. Neural Computing and Applications,2011,20(4): 535-541.
    [17] YANG J, ZHOU W N, SHI P, et al. Synchronization of delayed neural networks with Lévy noise and Markovian switching via sampled data[J]. Nonlinear Dynamics,2015,81(3): 1179-1189.
    [18] WANG Z, LIU Y, YU L, et al. Exponential stability of delayed recurrent neural networks with Markovian jumping parameters[J]. Physics Letters A,2006,356(4/5): 346-352.
    [19] XENG X J, TIAN S H, SHI H G. Stability analysis of stochastic recurrent neural networks with unbounded time-varying delays[J]. Neurocomputing,2011,74(10): 11-16.
    [20] KOLMANOVSKII V, KOROLEVA N, MAIZENBERG T, et al. Neutral stochastic differential delay equations with Markovian switching[J]. Stochastic Analysis and Applications,2003,21(4): 819-847.
    [21] PARK P, LEE W, LEE S Y. Auxiliary function-based integral inequalities for quadratic functions and their applications to time-delay systems[J]. Journal of the Franklin Institute,2015,352(4): 1378-1396.
  • 加载中
计量
  • 文章访问数:  1078
  • HTML全文浏览量:  242
  • PDF下载量:  226
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-21
  • 修回日期:  2020-09-29
  • 刊出日期:  2020-11-01

目录

    /

    返回文章
    返回