留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Bayes FFT的螺栓连接结构模型更新方法

张勇 赵岩 欧阳华江

张勇, 赵岩, 欧阳华江. 基于Bayes FFT的螺栓连接结构模型更新方法[J]. 应用数学和力学, 2020, 41(8): 866-876. doi: 10.21656/1000-0887.400373
引用本文: 张勇, 赵岩, 欧阳华江. 基于Bayes FFT的螺栓连接结构模型更新方法[J]. 应用数学和力学, 2020, 41(8): 866-876. doi: 10.21656/1000-0887.400373
ZHANG Yong, ZHAO Yan, OUYANG Huajiang. Model Updating for Bolted Structures Based on the Bayesian FFT Method[J]. Applied Mathematics and Mechanics, 2020, 41(8): 866-876. doi: 10.21656/1000-0887.400373
Citation: ZHANG Yong, ZHAO Yan, OUYANG Huajiang. Model Updating for Bolted Structures Based on the Bayesian FFT Method[J]. Applied Mathematics and Mechanics, 2020, 41(8): 866-876. doi: 10.21656/1000-0887.400373

基于Bayes FFT的螺栓连接结构模型更新方法

doi: 10.21656/1000-0887.400373
基金项目: 国家自然科学基金(11772084;11672052)
详细信息
    作者简介:

    张勇(1991—),男,博士生(E-mail: 404247432@qq.com);赵岩(1974—),男,教授(通讯作者. E-mail: yzhao@dlut.edu.cn).

  • 中图分类号: O324

Model Updating for Bolted Structures Based on the Bayesian FFT Method

Funds: The National Natural Science Foundation of China(11772084;11672052)
  • 摘要: 提出了一种基于Bayes FFT的螺栓连接结构模型更新方法.该方法中,通过弹簧和薄层单元模拟螺栓连接,借助子结构技术建立组合结构动力学方程.进一步地,在Bayes理论框架下,由测试时域信号FFT变换系数的统计特征构造模型更新参数的后验概率密度函数,以其负对数似然函数极值为优化目标进行参数更新,采用最大后验估计得到最优估计值,并通过后验概率分布渐近于Gauss分布的性质进行参数的不确定性量化.在数值算例中,考虑随机载荷作用下组合悬臂梁结构的模型更新问题,针对两种不同连接模型化方式给出了更新参数的不确定量化,并通过测量功率谱和修正功率谱对比,验证了所提出方法的正确性和有效性.
  • [1] 姜东, 吴邵庆, 史勤丰, 等. 基于薄层单元的螺栓连接结构接触面不确定性参数识别[J]. 工程力学, 2015,32(4): 220-227.(JIANG Dong, WU Shaoqing, SHI Qinfeng, et al. Contact interface parameter identification of bolted joint structure with uncertainty using thin layer element method[J]. Engineering Mechanics,2015,32(4): 220-227.(in Chinese))
    [2] 颜王吉, 曹诗泽, 任伟新. 结构系统识别不确定性分析的Bayes方法及其进展[J]. 应用数学和力学, 2017,〖STHZ〗 38(1): 44-59.(YAN Wangji, CAO Shize, REN Weixin. Uncertainty quantification for system identification utilizing the Bayesian theory and its recent advances[J]. Applied Mathematics and Mechanics,2017,38(1): 44-59.(in Chinese))
    [3] 陈喆, 何欢, 陈国平, 等. 考虑不确定性因素的有限元模型修正方法研究[J]. 振动工程学报, 2017,30(6): 921-928.(CHEN Zhe, HE Huan, CHEN Guoping, et al. The research of finite element model updating method considering the uncertainty[J]. Journal of Vibration Engineering,2017,30(6): 921-928.(in Chinese))
    [4] BECK J L, KATAFYGIOTIS L S. Updating models and their uncertainties, I: Bayesian statistical framework[J]. Journal of Engineering Mechanics,1998,124(4): 455-461.
    [5] VANIK M W, BECK J L, AU S K. Bayesian probabilistic approach to structural health monitoring[J]. Journal of Engineering Mechanics,2000,126(7): 738-745.
    [6] YUEN K V. Bayesian Methods for Structural Dynamics and Civil Engineering [M]. 1st ed. Singapore: John Wiley & Sons, 2010.
    [7] CHING J Y, BECK J L. New Bayesian model updating algorithm applied to a structural health monitoring benchmark[J]. Structural Health Monitoring,2004,3(4): 313-332.
    [8] YAN W, KATAFYGIOTIS L S. A novel Bayesian approach for structural model updating utilizing statistical modal information from multiple setups[J]. Structural Safety,2015,52: 260-271.
    [9] AU S K, NI Y C. Fast Bayesian modal identification of structures using known single-input forced vibration data[J]. Structural Control & Health Monitoring,2014,21(3): 381-402.
    [10] LI W L. A new method for structural model updating and joint stiffness identification[J]. Mechanical Systems and Signal Processing,2002,16(1): 155-167.
    [11] INGOLE S B, CHATTERJEE A. Joint stiffness identification: a three-parameter joint model of cantilever beam[J]. The International Journal of Acoustics and Vibration,2017,22(1): 3-13.
    [12] JALALI H, HEDAYATI A, AHMADIAN H. Modelling mechanical interfaces experiencing micro-slip/slap[J]. Inverse Problems in Science and Engineering,2011,19(6): 751-764.
    [13] AHMADIAN H, JALALI H, MOTTERSHEAD J E, et al. Dynamic modeling of spot welds using thin layer interface theory[C]// Tenth Intonational Congress on Sound and Vibration . Stockholm, Sweden, 2003.
    [14] MAYER M H, GAUL L. Segment-to-segment contact elements for modelling joint interfaces in finite element analysis[J]. Mechanical Systems and Signal Processing,2007,〖STHZ〗 21(2): 724-734.
    [15] MEHRPOUYA M, GRAHAM E, PARK S S. FRF based joint dynamics modeling and identification[J]. Mechanical Systems and Signal Processing,2013,39(1/2): 265-279.
    [16] 林家浩, 张亚辉. 随机振动的虚拟激励法[M]. 北京: 科学出版社, 2004.(LIN Jiahao, ZHANG Yahui. Virtual Excitation Method for Random Vibration [M]. Beijing: Science Press, 2004.(in Chinese))
    [17] AU S K. Operational Modal Analysis: Modeling, Bayesian Inference Uncertainty Laws [M]. Berlin: Springer, 2017.
  • 加载中
计量
  • 文章访问数:  1768
  • HTML全文浏览量:  347
  • PDF下载量:  527
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-16
  • 修回日期:  2020-03-05
  • 刊出日期:  2020-08-01

目录

    /

    返回文章
    返回