留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非完整约束Hamilton动力系统保结构算法

满淑敏 高强 钟万勰

满淑敏, 高强, 钟万勰. 非完整约束Hamilton动力系统保结构算法[J]. 应用数学和力学, 2020, 41(6): 581-590. doi: 10.21656/1000-0887.400375
引用本文: 满淑敏, 高强, 钟万勰. 非完整约束Hamilton动力系统保结构算法[J]. 应用数学和力学, 2020, 41(6): 581-590. doi: 10.21656/1000-0887.400375
MAN Shumin, GAO Qiang, ZHONG Wanxie. A StructurePreserving Algorithm for Hamiltonian Systems With Nonholonomic Constraints[J]. Applied Mathematics and Mechanics, 2020, 41(6): 581-590. doi: 10.21656/1000-0887.400375
Citation: MAN Shumin, GAO Qiang, ZHONG Wanxie. A StructurePreserving Algorithm for Hamiltonian Systems With Nonholonomic Constraints[J]. Applied Mathematics and Mechanics, 2020, 41(6): 581-590. doi: 10.21656/1000-0887.400375

非完整约束Hamilton动力系统保结构算法

doi: 10.21656/1000-0887.400375
基金项目: 国家自然科学基金(11972107;91748203);中央高校基本科研业务费(DUT2019TD37)
详细信息
    作者简介:

    满淑敏(1990—),女,博士生(E-mail: manshumin@mail.dlut.edu.cn);高强(1978—),男,教授,博士生导师(通讯作者. E-mail: qgao@dlut.edu.cn).

  • 中图分类号: O241

A StructurePreserving Algorithm for Hamiltonian Systems With Nonholonomic Constraints

Funds: The National Natural Science Foundation of China(11972107;91748203)
  • 摘要: 基于变分积分的思想和对偶变量表示的Lagrange-d’Alembert原理,构造了一类求解非完整约束Hamilton动力系统的高阶保结构算法.基于变分积分法,选取适当的多项式及数值积分方法,将对偶变量形式的Lagrange-d’Alembert原理进行离散.在此离散原理的基础上,以积分区间两端位移为独立变量,同时要求在区间端点处及区间内部的控制点处严格满足非完整约束,从而得到数值积分方法.给出了算法的对称性证明.数值算例表明算法具有高阶收敛性,严格满足非完整约束,且在长时间仿真后,依然能保持良好的数值性质.
  • [1] HERTZ A, GARBASSO A. Die prinzipien der mechanik in neuem zusammenhang dargestellt[J]. Il Nuovo Cimento 〖STBX〗(1895—1900),1895,1(1): 40-59.
    [2] APPELL P. Traité de Mécanique Rationnelle [M]. Gauthier-Villars, 1924.
    [3] HAMEL G. Theoretische Mechanik [M]. Berlin: Springer, 1978.
    [4] BLOCH A M. Nonholonomic Mechanics and Control [M]. Berlin: Springer, 2015.
    [5] MARSDEN J E, WEST M. Discrete mechanics and variational integrators[J]. Acta Numerica,2001,10(1): 357-514.
    [6] LEW A, MARSDEN J E, ORTIZ M, et al. Variational time integrators[J]. International Journal for Numerical Methods in Engineering,2010,60(1): 153-212.
    [7] HAIRER E, WANNER G, LUBICH C. Geometric Numerical Integration [M]. Berlin: Springer, 2002.
    [8] CORTS J, MARTNEZ S. Non-holonomic integrators[J]. Nonlinearity,2001,14(5): 1365-1392.
    [9] CORTS J. Energy conserving nonholonomic integrators[J]. Discrete & Continuous Dynamical Systems,2003,2003(S): 189-199.
    [10] DE LEN M, DE DIEGO D M, SANTAMARIA-MERINO A. Geometric integrators and nonholonomic mechanics[J]. Journal of Mathematical Physics,2002,45(3): 1042.
    [11] DE LEN M, DE DIEGO D M, SANTAMARIA-MERINO A. Geometric numerical integration of nonholonomic systems and optimal control problems[J]. European Journal of Control,2004,10(5): 515-521.
    [12] MCLACHLAN R, PERLMUTTER M. Integrators for nonholonomic mechanical systems[J]. Journal of Nonlinear Science,2006,16(4): 283-328.
    [13] KOBILAROV M, MARSDEN J E, SUKHATME G S. Geometric discretization of nonholonomic systems with symmetries[J]. Discrete and Continuous Dynamical Systems(Series S),2010,3(1): 61-84.
    [14] GAO Q, TAN S J, ZHANG H W, et al. Symplectic algorithms based on the principle of least action and generating functions[J]. International Journal for Numerical Methods in Engineering,2012,89(4): 438-508.
    [15] HALL J, LEOK M. Spectral variational integrators[J]. Numerische Mathematik,2012,130(4): 681-740.
    [16] HAIRER E, LUBICH C, WANNER G. Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations [M]. Berlin: Springer, 2006.
    [17] OSTROWSKI J, LEWIS A, MURRAY R, et al. Nonholonomic mechanics and locomotion: the snakeboard example[C]// Paper Presented at the Proceedings of the 1994 IEEE International Conference on Robotics and Automation.Piscataway, USA, 1994.
  • 加载中
计量
  • 文章访问数:  1572
  • HTML全文浏览量:  321
  • PDF下载量:  557
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-23
  • 刊出日期:  2020-06-01

目录

    /

    返回文章
    返回