[1] |
HERTZ A, GARBASSO A. Die prinzipien der mechanik in neuem zusammenhang dargestellt[J]. Il Nuovo Cimento 〖STBX〗(1895—1900),1895,1(1): 40-59.
|
[2] |
APPELL P. Traité de Mécanique Rationnelle [M]. Gauthier-Villars, 1924.
|
[3] |
HAMEL G. Theoretische Mechanik [M]. Berlin: Springer, 1978.
|
[4] |
BLOCH A M. Nonholonomic Mechanics and Control [M]. Berlin: Springer, 2015.
|
[5] |
MARSDEN J E, WEST M. Discrete mechanics and variational integrators[J]. Acta Numerica,2001,10(1): 357-514.
|
[6] |
LEW A, MARSDEN J E, ORTIZ M, et al. Variational time integrators[J]. International Journal for Numerical Methods in Engineering,2010,60(1): 153-212.
|
[7] |
HAIRER E, WANNER G, LUBICH C. Geometric Numerical Integration [M]. Berlin: Springer, 2002.
|
[8] |
CORTS J, MARTNEZ S. Non-holonomic integrators[J]. Nonlinearity,2001,14(5): 1365-1392.
|
[9] |
CORTS J. Energy conserving nonholonomic integrators[J]. Discrete & Continuous Dynamical Systems,2003,2003(S): 189-199.
|
[10] |
DE LEN M, DE DIEGO D M, SANTAMARIA-MERINO A. Geometric integrators and nonholonomic mechanics[J]. Journal of Mathematical Physics,2002,45(3): 1042.
|
[11] |
DE LEN M, DE DIEGO D M, SANTAMARIA-MERINO A. Geometric numerical integration of nonholonomic systems and optimal control problems[J]. European Journal of Control,2004,10(5): 515-521.
|
[12] |
MCLACHLAN R, PERLMUTTER M. Integrators for nonholonomic mechanical systems[J]. Journal of Nonlinear Science,2006,16(4): 283-328.
|
[13] |
KOBILAROV M, MARSDEN J E, SUKHATME G S. Geometric discretization of nonholonomic systems with symmetries[J]. Discrete and Continuous Dynamical Systems(Series S),2010,3(1): 61-84.
|
[14] |
GAO Q, TAN S J, ZHANG H W, et al. Symplectic algorithms based on the principle of least action and generating functions[J]. International Journal for Numerical Methods in Engineering,2012,89(4): 438-508.
|
[15] |
HALL J, LEOK M. Spectral variational integrators[J]. Numerische Mathematik,2012,130(4): 681-740.
|
[16] |
HAIRER E, LUBICH C, WANNER G. Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations [M]. Berlin: Springer, 2006.
|
[17] |
OSTROWSKI J, LEWIS A, MURRAY R, et al. Nonholonomic mechanics and locomotion: the snakeboard example[C]// Paper Presented at the Proceedings of the 1994 IEEE International Conference on Robotics and Automation.Piscataway, USA, 1994.
|