留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生态位贴近度的Type-2直接T-S模糊控制

郝云力 程向阳 王茂华

郝云力, 程向阳, 王茂华. 生态位贴近度的Type-2直接T-S模糊控制[J]. 应用数学和力学, 2020, 41(11): 1210-1223. doi: 10.21656/1000-0887.400376
引用本文: 郝云力, 程向阳, 王茂华. 生态位贴近度的Type-2直接T-S模糊控制[J]. 应用数学和力学, 2020, 41(11): 1210-1223. doi: 10.21656/1000-0887.400376
HAO Yunli, CHENG Xiangyang, WANG Maohua. Type-2 Direct T-S Fuzzy Control of Niche Equality Indexes[J]. Applied Mathematics and Mechanics, 2020, 41(11): 1210-1223. doi: 10.21656/1000-0887.400376
Citation: HAO Yunli, CHENG Xiangyang, WANG Maohua. Type-2 Direct T-S Fuzzy Control of Niche Equality Indexes[J]. Applied Mathematics and Mechanics, 2020, 41(11): 1210-1223. doi: 10.21656/1000-0887.400376

生态位贴近度的Type-2直接T-S模糊控制

doi: 10.21656/1000-0887.400376
基金项目: 国家自然科学基金(面上项目)(71573256);国家重点研发计划子课题(2017YFC0804408);2019年安徽教育厅高校人文社科重点研究项目(SK2019A0540;SK2019A0813)
详细信息
    作者简介:

    郝云力(1984—),男,讲师,博士生(E-mail: hsh8126@163.com);程向阳(1963—),男,教授,硕士生导师(通讯作者. E-mail: 978549482@qq.com).

  • 中图分类号: O232

Type-2 Direct T-S Fuzzy Control of Niche Equality Indexes

Funds: The National Natural Science Foundation of China(General Program)(71573256)
  • 摘要: 生态位在生态系统中起着重要作用,type-2直接T-S模糊控制在稳定一类具有参数不确定性的非线性系统时,具有很好的可操作性.将系统的生物个体的进化特性、自适应性与直接T-S模糊type-2控制方法相结合,以生态位贴近度函数作为type-2 T-S模糊控制的后件,构造具有生物特性的type-2直接T-S模糊控制方法,求得生态位生态因子的自适应律,反映了生物个体的自适应利用环境的程度,运用Lyapunov方法分析系统稳定性,并通过实例仿真对比分析得出type-2在稳定性和收敛性上是优于type-1的.此方法的提出有利于环境的和谐和生态系统的稳定及生态环境的可持续发展,也使模糊控制有了实际的物理背景.
  • [1] 李医民. 复杂生态系统的非线性分析与模糊容错控制[D]. 博士学位论文. 南京: 南京航空航天大学, 2004.(LI Yimin. Nonlinear analysis and fuzzy fault-tolerant control for complex ecosystems[D]. PhD Thesis. Nanjing: Nanjing University of Aeronautics and Astronautics, 2004.(in Chinese))
    [2] WANG J H. The models of niche and their application[J]. Ecological Modelling,1995,80(2/3): 279-291.
    [3] LI Y M, SUN X H. Modelling dynamic niche and community model by type-2 fuzzy set[J]. Ecological modelling,2008,211(3/4): 375-382.
    [4] PETER B, ANTOINE G. Niche dynamics in space and time[J]. Trends in Ecology & Evolution,2008,23(3): 149-158.
    [5] CAO G X. The definition of the niche by fuzzy set theory[J]. Ecological Modelling,1995,77(1): 65-71.
    [6] 覃文杰, 关海艳, 王培培. 基于Allee效应诱导的Filippov生态系统的动力学行为研究[J]. 应用数学和力学, 2020,41(4): 438-447.(QIN Wenjie, GUAN Haiyan, Wang Peipei. Dynamic behaviors of Filippoveco systems induced by Allee effects[J]. Applied Mathematics and Mechanics,2020,41(4): 438-447.(in Chinese))
    [7] 李医民, 郝云力. 基于Niche的间接T-S模糊自适应控制[J]. 系统工程与电子技术, 2011,10(33): 2282-2287.(LI Yimin, HAO Yunli. Indirect T-S fuzzy adaptive control based on Niche[J]. Systems Engineering and Electronics,2011,10(33): 2282-2287.(in Chinese))
    [8] 李天泽, 郭明. 基于多切换传输的复变量混沌系统的有限时组合同步控制[J]. 应用数学和力学, 2019, 40(11): 1299-1308.(LI Tianze, GUO Ming. Finite-time combination synchronization control of complex-variable chaotic systems with multi-switching transmission[J]. Applied Mathematics and Mechanics,2019,40(11): 1299-1308.(in Chinese))
    [9] 杜伟霞, 张思进, 殷珊. 一类对称碰撞系统的间歇混沌控制方法[J]. 应用数学和力学,2018,39(10): 1149-1158.(DU Weixia, ZHANG Sijin, YIN Shan. An intermittent chaos control method for a class of symmetric impact systems[J]. Applied Mathematics and Mechanics,2018,39(10): 1149-1158.(in Chinese))
    [10] 张发祥. 输入输出具有非线性关系的Type-2仿生模糊控制[D]. 硕士学位论文. 镇江: 江苏大学, 2018.(ZHANG Faxiang. Type-2 bionic fuzzy control with nonlinear relation between input and output[D]. Master Thesis. Zhenjiang: Jiangsu University, 2018.(in Chinese))
    [11] WEN C, FENG H. Sliding mode fuzzy control for Takagi-Sugeno fuzzy systems with bilinear consequent part subject to multiple constraints[J]. Information Sciences,2016,327: 258-271.
    [12] ZHANG F X, LI Y M. Indirect adaptive fuzzy control of SISO nonlinear systems with input-output nonlinear relationship[J]. IEEE Transactions on Fuzzy Systems,2018,26(5): 2699-2708.
    [13] ZHANG F X, LI Y M. Direct adaptive type-2 fuzzy control[J]. Applied Intelligence,2018,48(3): 541-554.
    [14] ZHANG F X, LI Y M. Direct adaptive fuzzy control of SISO nonlinear systems with input-output nonlinear relationship[J]. International Journal of Fuzzy Systems,2018,20(4): 1069-1078.
    [15] 杨铭, 李林廷, 高英. 多目标优化问题鲁棒有效解与真有效解之间的关系[J]. 应用数学和力学, 2019,40(12): 1364-1372.(YANG Ming, LI Linting, GAO Ying. Relations between robust efficient solutions and properly efficient solutions to multiobjective optimization problems[J]. Applied Mathematics and Mechanics,2019,40(12): 1364-1372.(in Chinese))
    [16] YANG X Z, LAM H K, WU L G. Membership-dependent stability conditions for type-1 and interval type-2 T-S fuzzy systems[J]. Fuzzy Sets and Systems,2019,356: 44-62.
    [17] XIE B K, LEE S J. An extended type-reduction method for general type-2 fuzzy sets[J]. IEEE Transactions on Fuzzy Systems,2017,25(3): 715-724.
    [18] 贡崇颖, 李医民. 肌型血管生物数学模型的非线性状态反馈同步[J]. 数学的实践与认识, 2008,38(8): 103-108.(GONG Chongying, LI Yimin. Nonlinear state feedback synchronization of muscular vascular biological mathematical model[J]. Practice and Understanding of Mathematics,2008,38(8): 103-108.(in Chinese))
  • 加载中
计量
  • 文章访问数:  1355
  • HTML全文浏览量:  230
  • PDF下载量:  219
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-23
  • 修回日期:  2020-05-25
  • 刊出日期:  2020-11-01

目录

    /

    返回文章
    返回