留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类具有忆阻器的Lorenz型混沌系统余维二分岔及无穷远处动力学分析

黄俊 陈玉明

黄俊, 陈玉明. 一类具有忆阻器的Lorenz型混沌系统余维二分岔及无穷远处动力学分析[J]. 应用数学和力学, 2020, 41(11): 1275-1283. doi: 10.21656/1000-0887.410023
引用本文: 黄俊, 陈玉明. 一类具有忆阻器的Lorenz型混沌系统余维二分岔及无穷远处动力学分析[J]. 应用数学和力学, 2020, 41(11): 1275-1283. doi: 10.21656/1000-0887.410023
HUANG Jun, CHEN Yuming. Codimension-2 Bifurcation Dynamics and Infinity Analysis of a Class of Lorenz Chaos Systems With Memristors[J]. Applied Mathematics and Mechanics, 2020, 41(11): 1275-1283. doi: 10.21656/1000-0887.410023
Citation: HUANG Jun, CHEN Yuming. Codimension-2 Bifurcation Dynamics and Infinity Analysis of a Class of Lorenz Chaos Systems With Memristors[J]. Applied Mathematics and Mechanics, 2020, 41(11): 1275-1283. doi: 10.21656/1000-0887.410023

一类具有忆阻器的Lorenz型混沌系统余维二分岔及无穷远处动力学分析

doi: 10.21656/1000-0887.410023
基金项目: 国家自然科学基金(11701104);广东省普通高校特色创新项目(2016KTSCX076)
详细信息
    作者简介:

    黄俊(1994—),男,硕士生(E-mail: supersix233@qq.com);陈玉明(1987—),男,副教授,博士(通讯作者. E-mail: blkhpz@126.com).

  • 中图分类号: O175

Codimension-2 Bifurcation Dynamics and Infinity Analysis of a Class of Lorenz Chaos Systems With Memristors

Funds: The National Natural Science Foundation of China(11701104)
  • 摘要: 基于经典的Lorenz系统,通过反馈控制的方式得到了一类具有忆阻器的三维混沌系统,对该系统分别从局部高余维分岔及无穷远全局动力学行为这两个方面进行了研究.首先,基于平均理论,对原点平衡点处的zero-Hopf分岔行为进行了分析;其次,基于中心流形理论,对原点平衡点处的double-zero分岔进行了分析;最后,根据Poincaré紧致化方法,对该系统在无穷远处的动力学行为进行了研究.
  • [1] BAO B C, XU J P, LIU Z. Initial state dependent dynamical behaviors in a memristor based chaotic circuit[J]. Chinese Physics Letters,2010,27(7): 070504.
    [2] LIN Z H, WANG H X. Efficient image encryption using a chaos-based PWL memristor[J]. IETE Technical Review,2010,27(4): 318-325.
    [3] SUN J W, SHEN Y, YIN Q, et al. Compound synchronization of four memristor chaotic oscillator systems and secure communication[J]. Chaos,2013,23(1): 013140.
    [4] 王伟, 曾以成, 陈争, 等. 忆阻器混沌电路产生的共存吸引子与Hopf分岔[J]. 计算物理, 2017,34(6): 747-756.(WANG Wei, ZENG Yicheng, CHEN Zheng, et al. Coexisting attractors and Hopf bifuracation in floating memristors based chaotic ciruit[J]. Chinese Journal of Computtaional Physics,2017,34(6): 747-756.(in Chinese))
    [5] 陈秋杰, 李文. 忆阻器混沌电路的硬件实现[J]. 工业控制计算机, 2018,31(11): 155-156.(CHEN Qiujie, LI Wen. Hardware implementation of memristor chaotic circuit[J]. Industrial Control Computer,2018,31(11): 155-156.(in Chinese))
    [6] 周鹍. 余维2的叉形分岔[J]. 力学与实践, 1996,18(1): 26-27.(ZHOU Kun. The fork bifurcation of codimension 2[J]. Mechanics in Engineering,1996,18(1): 26-27.(in Chinese))
    [7] 黄俊, 陈玉明. 一类具有忆阻器的Lorenz 型混沌系统稳定性及余维一分岔分析[J]. 应用数学进展, 2019,8(4): 858-867.(HUANG Jun, CHEN Yuming. Stability and co-dimension one bifurcation analysis of a class of Lorenz chaotic systems with memristor[J]. Advances in Applied Mathematics,2019,8(4): 858-867.(in Chinese))
    [8] 张海龙, 闵富红, 王恩荣. 关于Lyapunov指数计算方法的比较[J]. 南京师范大学学报(工程技术版), 2012,12(1): 5-9.(ZHANG Hailong, MIN Fuhong, WANG Enrong. The comparison for Lyapunov exponents calculation methods[J]. Journal of Nanjing Normal University(Engineering and Technology Edition),2012,12(1): 5-9.(in Chinese))
    [9] GUCKENHEIMER J. On a codimension two bifurcation[J]. Lecture Notes in Mathematics,1981,898: 99-142.
    [10] 韩茂安. 三维系统余维二分支中周期轨道与不变环面的存在性[J]. 系统科学与数学, 1998,18(4): 403-409.(HAN Maoan. Existence of periodic orbits and invariant tori in co-dimension two bifurcations of three dimensional systems[J]. Journal of Systems Science and Mathematical Sciences,1998,18(4): 403-409.(in Chinese))
    [11] CHEN Y M, LIANG H H. Zero-zero-Hopf bifurcation and ultimate bound estimation of a generalized Lorenz-Stenflo hyperchaotic system[J].Mathematical Methods in the Applied Sciences,2017,40: 3424-3432.
    [12] 张芷芬, 丁同仁, 黄文灶, 等. 微分方程定性理论[M]. 北京: 科学出版社, 1997.(ZHANG Zhifen, DING Tongren, HUANG Wenzao, et al. Qualitative Theory of Differential Equations [M]. Beijing: Science Press, 1997.(in Chinese))
    [13] CIMA A, LLIBRE J. Bounede polynomial vector fields[J]. Transactions of the American Mathematical Society,1990,318: 557-579.
    [14] 陈玉明. 基于Lorenz型系统的四维超混沌系统的复杂动力学研究[D]. 博士学位论文. 广州: 华南理工大学, 2014.(CHEN Yuming. Research on complex dynamics of four-dimensional hyperchaotic systems based on Lorenz-type systems[D]. PhD Thesis. Guangzhou: South China University of Technology, 2014.(in Chinese))
  • 加载中
计量
  • 文章访问数:  1578
  • HTML全文浏览量:  389
  • PDF下载量:  518
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-10
  • 修回日期:  2020-10-13
  • 刊出日期:  2020-11-01

目录

    /

    返回文章
    返回