[1] |
BAO B C, XU J P, LIU Z. Initial state dependent dynamical behaviors in a memristor based chaotic circuit[J]. Chinese Physics Letters,2010,27(7): 070504.
|
[2] |
LIN Z H, WANG H X. Efficient image encryption using a chaos-based PWL memristor[J]. IETE Technical Review,2010,27(4): 318-325.
|
[3] |
SUN J W, SHEN Y, YIN Q, et al. Compound synchronization of four memristor chaotic oscillator systems and secure communication[J]. Chaos,2013,23(1): 013140.
|
[4] |
王伟, 曾以成, 陈争, 等. 忆阻器混沌电路产生的共存吸引子与Hopf分岔[J]. 计算物理, 2017,34(6): 747-756.(WANG Wei, ZENG Yicheng, CHEN Zheng, et al. Coexisting attractors and Hopf bifuracation in floating memristors based chaotic ciruit[J]. Chinese Journal of Computtaional Physics,2017,34(6): 747-756.(in Chinese))
|
[5] |
陈秋杰, 李文. 忆阻器混沌电路的硬件实现[J]. 工业控制计算机, 2018,31(11): 155-156.(CHEN Qiujie, LI Wen. Hardware implementation of memristor chaotic circuit[J]. Industrial Control Computer,2018,31(11): 155-156.(in Chinese))
|
[6] |
周鹍. 余维2的叉形分岔[J]. 力学与实践, 1996,18(1): 26-27.(ZHOU Kun. The fork bifurcation of codimension 2[J]. Mechanics in Engineering,1996,18(1): 26-27.(in Chinese))
|
[7] |
黄俊, 陈玉明. 一类具有忆阻器的Lorenz 型混沌系统稳定性及余维一分岔分析[J]. 应用数学进展, 2019,8(4): 858-867.(HUANG Jun, CHEN Yuming. Stability and co-dimension one bifurcation analysis of a class of Lorenz chaotic systems with memristor[J]. Advances in Applied Mathematics,2019,8(4): 858-867.(in Chinese))
|
[8] |
张海龙, 闵富红, 王恩荣. 关于Lyapunov指数计算方法的比较[J]. 南京师范大学学报(工程技术版), 2012,12(1): 5-9.(ZHANG Hailong, MIN Fuhong, WANG Enrong. The comparison for Lyapunov exponents calculation methods[J]. Journal of Nanjing Normal University(Engineering and Technology Edition),2012,12(1): 5-9.(in Chinese))
|
[9] |
GUCKENHEIMER J. On a codimension two bifurcation[J]. Lecture Notes in Mathematics,1981,898: 99-142.
|
[10] |
韩茂安. 三维系统余维二分支中周期轨道与不变环面的存在性[J]. 系统科学与数学, 1998,18(4): 403-409.(HAN Maoan. Existence of periodic orbits and invariant tori in co-dimension two bifurcations of three dimensional systems[J]. Journal of Systems Science and Mathematical Sciences,1998,18(4): 403-409.(in Chinese))
|
[11] |
CHEN Y M, LIANG H H. Zero-zero-Hopf bifurcation and ultimate bound estimation of a generalized Lorenz-Stenflo hyperchaotic system[J].Mathematical Methods in the Applied Sciences,2017,40: 3424-3432.
|
[12] |
张芷芬, 丁同仁, 黄文灶, 等. 微分方程定性理论[M]. 北京: 科学出版社, 1997.(ZHANG Zhifen, DING Tongren, HUANG Wenzao, et al. Qualitative Theory of Differential Equations [M]. Beijing: Science Press, 1997.(in Chinese))
|
[13] |
CIMA A, LLIBRE J. Bounede polynomial vector fields[J]. Transactions of the American Mathematical Society,1990,318: 557-579.
|
[14] |
陈玉明. 基于Lorenz型系统的四维超混沌系统的复杂动力学研究[D]. 博士学位论文. 广州: 华南理工大学, 2014.(CHEN Yuming. Research on complex dynamics of four-dimensional hyperchaotic systems based on Lorenz-type systems[D]. PhD Thesis. Guangzhou: South China University of Technology, 2014.(in Chinese))
|