留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有时延和随机扰动的未知C-G神经网络的有限时间函数投影同步及其在保密通信中的应用

张雅美 郝涛 尹四倍 张檬

张雅美, 郝涛, 尹四倍, 张檬. 具有时延和随机扰动的未知C-G神经网络的有限时间函数投影同步及其在保密通信中的应用[J]. 应用数学和力学, 2020, 41(12): 1405-1416. doi: 10.21656/1000-0887.410025
引用本文: 张雅美, 郝涛, 尹四倍, 张檬. 具有时延和随机扰动的未知C-G神经网络的有限时间函数投影同步及其在保密通信中的应用[J]. 应用数学和力学, 2020, 41(12): 1405-1416. doi: 10.21656/1000-0887.410025
ZHANG Yamei, HAO Tao, YIN Sibei, ZHANG Meng. Finite-Time Function Projective Synchronization of Unknown Cohen-Grossberg Neural Networks With Time Delays and Stochastic Disturbances and Its Application in Secure Communication[J]. Applied Mathematics and Mechanics, 2020, 41(12): 1405-1416. doi: 10.21656/1000-0887.410025
Citation: ZHANG Yamei, HAO Tao, YIN Sibei, ZHANG Meng. Finite-Time Function Projective Synchronization of Unknown Cohen-Grossberg Neural Networks With Time Delays and Stochastic Disturbances and Its Application in Secure Communication[J]. Applied Mathematics and Mechanics, 2020, 41(12): 1405-1416. doi: 10.21656/1000-0887.410025

具有时延和随机扰动的未知C-G神经网络的有限时间函数投影同步及其在保密通信中的应用

doi: 10.21656/1000-0887.410025
基金项目: 山东省高等学校“青创科技计划”(2019KJN015);山东省职业教育教学改革研究项目(2019301)
详细信息
    作者简介:

    张雅美(1991—),女,硕士(通讯作者. E-mail: amyzhang0203@126.com).

  • 中图分类号: O231

Finite-Time Function Projective Synchronization of Unknown Cohen-Grossberg Neural Networks With Time Delays and Stochastic Disturbances and Its Application in Secure Communication

  • 摘要: 针对具有时延和随机扰动的未知CG神经网络,研究了有限时间函数投影同步在保密通信中的应用问题.基于有限时间稳定性定理和Lyapunov稳定性理论,结合开环控制和反馈控制,提出了一种新的混合控制策略,实现了驱动响应复杂网络在有限时间内的函数投影同步,完成了未知参数的辨识,并给出了同步过渡时间上界的估计.仿真实验验证了所提方法的有效性以及在保密通信中应用的可行性.
  • [1] ZHANG H, WANG Z, LIU D. A comprehensive review of stability analysis of continuous-time recurrent neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems,2014,25: 1229-1262.
    [2] COHEN M, GROSSBERG S. Absolute stability of global pattern formation and parallel memory storage by competitive neural networks[J]. IEEE Transactions on Systems, Man and Cybernetics,1987,42: 288-308.
    [3] WU Z G, SHI P, SU H Y, et al. Stochastic synchronization of Markovian jump neural networks with time-varying delay using sampled data[J]. IEEE Transactions on Cybernetics,2013,43: 1796-1806.
    [4] WANG Y W, WANG H O, XIAO J W, et al. Synchronization of complex dynamical networks under recoverable attacks[J]. Automatica,2010,46(1): 197-203.
    [5] WANG Z, ZHANG H. Synchronization stability in complex interconnected neural networks with nonsymmetric coupling[J]. Neurocomputing,2013, 108: 84-92.
    [6] 韩敏, 张雅美, 张檬. 具有双重时滞的时变耦合复杂网络的牵制外同步研究[J]. 物理学报, 2015,64(7): 070506.(HAN Min, ZHANG Yamei, ZHANG Meng. Outer synchronization analysis of two time-varying networks with double delays based on pinning control[J]. Acta Physica Sinica,2015,64(7): 070506.(in Chinese))
    [7] 艾合麦提 ?瘙 簚 麦麦提阿吉, 李洪利. 含分布时滞递归神经网络的一般衰减同步[J]. 应用数学和力学, 2019,40(11): 1204-1213.(MUHAMMADHAJI Ahmadjan, LI Hongli. General decay synchronization for recurrent neural networks with distributed time delays[J]. Applied Mathematics and Mechanics,2019,40(11): 1204-1213.(in Chinese))
    [8] 张玮玮, 陈定元, 吴然超, 等. 一类基于忆阻器分数阶时滞神经网络的修正投影同步[J]. 应用数学和力学, 2018,39(2): 239-248.(ZHANG Weiwei, CHEN Dingyuan, WU Ranchao, et al. Modified projective synchronization of memristor-based fractional-order delayed neural networks[J]. Applied Mathematics and Mechanics,2018,39(2): 239-248.(in Chinese))
    [9] JING T Y, ZHANG D Y, MEI J, et al. Finite-time synchronization of delayed complex dynamic networks via aperiodically intermittent control[J]. Journal of the Franklin Institute,2019,356: 5464-5484.
    [10] LU J Y, GUO Y P, JI Y D, et al. Finite-time synchronization for different dimensional fractional-order complex dynamical networks[J]. Chaos, Solitons & Fractals,2020,130: 109433.
    [11] ZHU Q X, CAO J D. Adaptive synchronization of chaotic Cohen-Crossberg neural networks with mixed time delays[J]. Nonlinear Dynamics,2010,61: 517-534.
    [12] GAN Q T. Adaptive synchronization of Cohen-Grossberg neural networks with unknown parameters and mixed time-varying delays[J]. Communications in Nonlinear Science and Numerical Simulation,2012,17(7): 3040-3049.
    [13] HU C, YU J, JIANG H J. Finite-time synchronization of delayed neural networks with Cohen-Grossberg type based on delayed feedback control[J]. Neurocomputing,2014,143: 90-96.
    [14] LI D, CAO J D. Finite-time synchronization of coupled networks with one single time-varying delay coupling[J]. Neurocomputing,2015,166: 265-270.
    [15] SHI Y C, CAO J D. Finite-time synchronization of memristive Cohen-Grossberg neural networks with time delays[J]. Neurocomputing,2020,377: 159-167.
    [16] ZHANG R, YANG Y Q, XU Z Y, et al. Function projective synchronization in drive-response dynamical network[J]. Physics Letters A,2010,374(30): 3025-3028.
    [17] HAN M, ZHANG Y M. Complex function projective synchronization in drive-response complex-variable dynamical networks with coupling time delays[J]. Journal of the Franklin Institute,2016, 353(8): 1742-1758.
    [18] SUN Y Z, ZHAO D H. Effects of noise on the outer synchronization of two unidirectionally coupled complex dynamical networks[J]. Chaos: an Interdisciplinary Journal of Nonlinear Science,2012,22: 023131.
    [19] LAI Y M, PORTER M A. Noise-induced synchronization, desynchronization, and clustering in globally coupled nonidentical oscillators[J]. Physical Review E,2013,88(1): 012905.
    [20] SHI Y C, ZHU P Y. Adaptive synchronization of different Cohen-Grossberg chaotic neural networks with unknown parameters and time-varying delays[J]. Nonlinear Dynamics,2013,73(3): 1721-1728.
    [21] ZHOU L L, WANG C H, He H Z, et al. Time-controllable combinatorial inner synchronization and outer synchronization of anti-star networks and its application in secure communication[J]. Communications in Nonlinear Science and Numerical Simulation,2015,22(1/3): 623-640.
  • 加载中
计量
  • 文章访问数:  1298
  • HTML全文浏览量:  392
  • PDF下载量:  243
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-13
  • 修回日期:  2020-11-04
  • 刊出日期:  2020-12-01

目录

    /

    返回文章
    返回