留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

任意弹性边界的多段梁自由振动研究

鲍四元 周静 陆健炜

鲍四元, 周静, 陆健炜. 任意弹性边界的多段梁自由振动研究[J]. 应用数学和力学, 2020, 41(9): 985-993. doi: 10.21656/1000-0887.410045
引用本文: 鲍四元, 周静, 陆健炜. 任意弹性边界的多段梁自由振动研究[J]. 应用数学和力学, 2020, 41(9): 985-993. doi: 10.21656/1000-0887.410045
BAO Siyuan, ZHOU Jing, LU Jianwei. Free Vibration of MultiSegment Beams With Arbitrary Boundary Conditions[J]. Applied Mathematics and Mechanics, 2020, 41(9): 985-993. doi: 10.21656/1000-0887.410045
Citation: BAO Siyuan, ZHOU Jing, LU Jianwei. Free Vibration of MultiSegment Beams With Arbitrary Boundary Conditions[J]. Applied Mathematics and Mechanics, 2020, 41(9): 985-993. doi: 10.21656/1000-0887.410045

任意弹性边界的多段梁自由振动研究

doi: 10.21656/1000-0887.410045
基金项目: 国家自然科学基金(11202146)
详细信息
    作者简介:

    鲍四元(1980—),男,副教授,博士,硕士生导师(通讯作者. E-mail: bsiyuan@126.com).

  • 中图分类号: TU323

Free Vibration of MultiSegment Beams With Arbitrary Boundary Conditions

Funds: The National Natural Science Foundation of China(11202146)
  • 摘要: 研究了连续多段梁的自由振动特性.为区别于诸简支等传统约束边界,提出了弹性约束边界下多段梁结构的自由振动特性分析方法.首先根据谱几何法,在传统Fourier级数的基础上添加四个辅助函数,构造了多段Euler梁中每段的横向位移函数.其次,将位移函数的假设谱几何形式代入多段梁结构的Lagrange函数得到新的表达式,由Hamilton原理将自由振动问题化成矩阵特征值形式,从而求解出任意弹性边界条件下多段梁的自振频率和模态.针对四个具体算例,通过改变边界处弹簧刚度值可求得不同边界条件下连续多段梁的自振频率和模态.与已有文献的结果比较,充分验证了该文方法的正确性、规范性和高效性.
  • [1] ZHANG Z G, WANG J, ZHANG Z Y, et al. Vibrations of multi-span non-uniform beams with arbitrary discontinuities and complicated boundary conditions[J]. Journal of Ship Mechanics,2014,18(9): 1129-1141.
    [2] 刘鹏, 刘红军, 林坤, 等. 基于样条有限点法的变截面Euler梁横向自由振动分析[J]. 振动与冲击, 2016,35(11): 66-73.(LIU Peng, LIU Hongjun, LIN Kun, et al. Free transverse vibration analysis of tapered Bernoulli-Euler beams based on spline finite point method[J]. Vibration and Shock,2016,35(11): 66-73.(in Chinese))
    [3] 田耀宗, 蹇开林. 轴向运动梁的横向振动分析[J]. 应用数学和力学, 2019,40(10): 1081-1088.(TIAN Yaozong, JIAN Kailin. Lateral vibration analysis of axially moving beams[J]. Applied Mathematics and Mechanics,2019,40(10): 1081-1088.(in Chinese))
    [4] 刘向尧, 聂宏, 魏小辉. 多跨的三种梁的横向自由振动模型[J]. 振动与冲击, 2016,35(8): 21-26.(LIU Xiangyao, NIE Hong, WEI Xiaohui. The transverse free-vibration model of three multi-span beams[J]. Journal of Vibration and Shock, 2016,35(8): 21-26.(in Chinese))
    [5] 李顺才, 梁丽, 喻秋. 阶梯梁弯曲振动固有频率的理论研究[J]. 甘肃科学学报,2018,30(4): 81-86.(LI Shuncai, LIANG Li, YU Qiu. Theoretic study on inherent frequency of bending vibration of stepped beam[J]. Gansu Journal of Science,2018,30(4): 81-86.(in Chinese))
    [6] 李道奎, 雷勇军, 唐国金. 分段轴压阶梯梁自由振动及稳定性分析的传递函数方法[J]. 国防科技大学学报, 2007,29(2): 1-4.(LI Daokui, LEI Yongjun, TANG Guojin. Free vibration and stability of multiple-step beams under stepped axial pressure by distributed transfer function method[J]. Journal of National University of Defense Technology,2007,29(2): 1-4.(in Chinese))
    [7] FARGHALY S H, EL-SAYED T A. Exact free vibration of multi-step Timoshenko beam system with several attachments[J]. Mechanical Systems and Signal Processing,2016,72/73: 525-546.
    [8] LI Q S. Vibratory characteristics of multi-step beams with an arbitrary number of cracks and concentrated masses[J]. Applied Acoustics,2001,62(6): 691-706.
    [9] 石先杰, 李春丽, 史冬岩. 基于谱几何法的环板结构面内自由振动特性分析[C]//全国随机振动理论与应用学术会议. 北京, 2015.(SHI Xianjie, LI Chunli, SHI Dongyan. Free in-plane vibration analysis based on spectro-geometric method[C]//National Conference on Theory and Application of Random Vibration . Beijing, 2015.(in Chinese))
    [10] 石先杰, 李春丽, 蒋华兵, 等. 弹性边界条件下圆板横向自由振动特性分析[J]. 振动、 测试与诊断, 2016,36(5): 984-989.(SHI Xianjie, LI Chunli, JIANG Huabing, et al. Free transverse vibration analysis of circular plate under elastic boundary condition[J]. Journal of Vibration, Measurement & Diagnosis,2016,36(5): 984-989.(in Chinese))
    [11] LI W L. Free vibrations of beams with general boundary conditions[J]. Journal of Sound and Vibration,2000,237(4): 709-725.
    [12] BAO S Y, WANG S D. A generalized solution procedure for in-plane free vibration of rectangular plates and annular sectorial plates[J]. Royal Society Open Science,2017,4(8): 170484. DOI: 10.1098/rsos.170484.
    [13] BAO S Y, WANG S D, WANG B. An improved Fourier-Ritz method for analyzing in-plane free vibration of sectorial plates[J]. Journal of Applied Mechanics,2017,84(9):1-9.
    [14] BAO S Y, WANG S D. A unified procedure for free transverse vibration of rectangular and annular sectorial plates[J]. Archive of Applied Mechanics,2019,89(8): 1485-1499.
    [15] LEE J. Application of Chebyshev-tau method to the free vibration analysis of stepped beams[J]. International Journal of Mechanical Sciences,2015,101/102: 411-420.
  • 加载中
计量
  • 文章访问数:  1546
  • HTML全文浏览量:  293
  • PDF下载量:  311
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-23
  • 修回日期:  2020-03-08
  • 刊出日期:  2020-09-01

目录

    /

    返回文章
    返回