留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类高阶非线性奇异扰动非局部稳态系统Robin问题

徐建中 汪维刚 莫嘉琪

徐建中, 汪维刚, 莫嘉琪. 一类高阶非线性奇异扰动非局部稳态系统Robin问题[J]. 应用数学和力学, 2020, 41(11): 1284-1291. doi: 10.21656/1000-0887.410049
引用本文: 徐建中, 汪维刚, 莫嘉琪. 一类高阶非线性奇异扰动非局部稳态系统Robin问题[J]. 应用数学和力学, 2020, 41(11): 1284-1291. doi: 10.21656/1000-0887.410049
XU Jianzhong, WANG Weigang, MO Jiaqi. On a Class of High-Order Nonlinear Singular Perturbed Nonlocal Systems’ Steady State Robin Problem[J]. Applied Mathematics and Mechanics, 2020, 41(11): 1284-1291. doi: 10.21656/1000-0887.410049
Citation: XU Jianzhong, WANG Weigang, MO Jiaqi. On a Class of High-Order Nonlinear Singular Perturbed Nonlocal Systems’ Steady State Robin Problem[J]. Applied Mathematics and Mechanics, 2020, 41(11): 1284-1291. doi: 10.21656/1000-0887.410049

一类高阶非线性奇异扰动非局部稳态系统Robin问题

doi: 10.21656/1000-0887.410049
基金项目: 国家自然科学基金(11771005);安徽省教育厅自然科学重点基金(KJ2018A0964;KJ2019A1261;KJ2019A1303);安徽省质量工程项目基金(2018jyxm0635)
详细信息
    作者简介:

    徐建中(1979—), 男, 副教授, 硕士(E-mail: xujianzhongok@163.com);莫嘉琪(1937—), 男, 教授(通讯作者. E-mail: mojiaqi@mail.ahnu.edu.cn).

  • 中图分类号: O175.29

On a Class of High-Order Nonlinear Singular Perturbed Nonlocal Systems’ Steady State Robin Problem

Funds: The National Natural Science Foundation of China(11771005)
  • 摘要: 讨论了一类高阶非线性积分微分奇异扰动系统稳态Robin问题.首先, 建立了高阶非线性非局部微分系统解的微分不等式理论.然后,构造了问题的外部解,并利用局部坐标系求得了边界层校正项,从而得到了解的形式渐近表示式.最后,利用微分不等式理论,证明了解的渐近表示式的一致有效性.
  • [1] RUSTIC G T, KOUTAVAS A, MARCHITTO T M, et al. Dynamical excitation of the tropical Pacific Ocean and ENSO variability by little ice age cooling[J]. Science,2015,350(6267): 1537-1541.
    [2] PAPAGEORGIOU N S, WINKERT P. Singular p-Laplacian equations with superliner perturbation[J]. Journal of Differential Equations,2019,265(2/3): 1462-1487.
    [3] DARAGHMEH A. Error bound fir non-zero initial condition using the singular perturbation approximation method[J]. Aatanani Naji Nathemstics,2018,6(11): 232.
    [4] GOLOVATY Y. Schrdinger operators with singular rank-two perturbations and point interactions[J]. Integral Equations and Operator Theory,2018,90(5): 57.
    [5] KOSHKIN S, JOVANOVIC V. Realization of non-holonomic constraints and singular perturbation theory for plane dumbbells[J]. Journal of Engineering Mathematics,2017,106(1): 123-141.
    [6] SALATHIEL Y, AMADOU Y, GARMBO B G, et al. Soliton solutions and traveling wave solutions for a discrete electrical lattice with nonlinear dispersion through the generalized Riccati equation mapping method[J]. Nonlinear Dynamics,2017,87(4): 2435-2443.
    [7] AMTONTSEV S N, KUZNETSOV I L. Singular perturbations of forward-backward p-parabolic equations[J]. Journal of Elliptic and Parabolic Equations,2016,2(1/2): 357-370.
    [8] DE JAGER E M, JIANG F R. The Theory of Singular Perturbation [M]. Amsterdam: North-Holland Publishing Co, 1996.
    [9] BARBU L, MOROSANU G. Singularly Perturbed Boundary-Value Problems [M]. Basel: Birkhauserm Verlag AG, 2007.
    [10] MO J Q. Singular perturbation for a class of nonlinear reaction diffusion systems[J]. Science in China(Series A),1989,32(11): 1306-1315.
    [11] MO J Q, LIN W T. Asymptotic solution of activator inhibitor systems for nonlinear reaction diffusion equations[J]. Journal of Systems Science & Complexity,2008,20(1): 119-128.
    [12] MO J Q. A class of singularly perturbed differential-difference reaction diffusion equation[J]. Advances in Mathematics,2009, 38(2): 227-231.
    [13] MO J Q. Homotopic mapping solving method for gain fluency of a laser pulse amplifier[J]. Science in China(Series G): Physics, Mechanics and Astronomy,2009,52(7): 1007-1070.
    [14] MO J Q. Approximate solution of homotopic mapping to solitary wave for generalized nonlinear KdV system[J]. Chinese Physics Letters,2009,26(1): 010204.
    [15] MO J Q. A singularly perturbed reaction diffusion problem for the nonlinear boundary condition with two parameters[J]. Chinese Physics B,2010,19(1): 010203.
    [16] XU J Z, ZHOU Z F. Existence and uniqueness of anti-periodic solutions to an n th-order nonlinear differential equation with multiple deviating arguments[J]. Annals of Differential Equations, 2012,28(1): 105-114.
    [17] XU J Z, MO J Q. The solution of disturbed time delay wind field system of ocean[J]. Acta Entiarum Naturalium Universitatis Nankaiensis,2019,52(1): 59-67.
    [18] 徐建中, 莫嘉琪. 一类流行性病毒传播的非线性动力学系统[J]. 南京理工大学学报, 2019,43(3): 286-291.(XU Jianzhong, MO Jiaqi. A class of nonlinear dynamic system of human groups for epidemic virus transmission[J]. Journal of Nanjing University of Science and Technology,2019,43(3): 286-291.(in Chinese))
    [19] 徐建中, 莫嘉琪. Fermi气体光晶格奇摄动模型的渐近解[J]. 吉林大学学报(理学版), 2018,56(6): 1331-1336.(XU Jianzhong, MO Jiaqi. Asymptotic solution of singular perturbation model for the Fermi gases optical lattices[J]. Journal of Jilin University(Science Edition),2018,56(6): 1331-1336.(in Chinese))
    [20] WANG W G, SHI L F, HAN X L, et al. Singular perturbation problem for reaction diffusion time delay equation with boundary perturbation[J]. Chinese Journal of Engineering Mathematics, 2015,32(2): 291-297.
    [21] 汪维刚, 林万涛, 石兰芳, 等. 非线性扰动时滞长波系统孤波近似解[J]. 物理学报, 2014,63(11): 110204.(WANG Weigang, LIN Wantao, SHI Lanfang, et al. Approximate solution of solitary wave for nonlinear-disturbed time delay long-wave system[J]. Acta Physica Sinica,2014,63(11): 110204.(in Chinese))
  • 加载中
计量
  • 文章访问数:  1227
  • HTML全文浏览量:  305
  • PDF下载量:  239
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-07
  • 刊出日期:  2020-11-01

目录

    /

    返回文章
    返回