留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于最小二乘法的飞机发动机安装节动态力识别

韩峰 沈承 徐俊伟

韩峰, 沈承, 徐俊伟. 基于最小二乘法的飞机发动机安装节动态力识别[J]. 应用数学和力学, 2020, 41(9): 974-984. doi: 10.21656/1000-0887.410054
引用本文: 韩峰, 沈承, 徐俊伟. 基于最小二乘法的飞机发动机安装节动态力识别[J]. 应用数学和力学, 2020, 41(9): 974-984. doi: 10.21656/1000-0887.410054
HAN Feng, SHEN Chen, XU Junwei. Identification of Dynamic Forces on Aircraft Engine Mounts With the Least Squares Method[J]. Applied Mathematics and Mechanics, 2020, 41(9): 974-984. doi: 10.21656/1000-0887.410054
Citation: HAN Feng, SHEN Chen, XU Junwei. Identification of Dynamic Forces on Aircraft Engine Mounts With the Least Squares Method[J]. Applied Mathematics and Mechanics, 2020, 41(9): 974-984. doi: 10.21656/1000-0887.410054

基于最小二乘法的飞机发动机安装节动态力识别

doi: 10.21656/1000-0887.410054
详细信息
    作者简介:

    韩峰(1983—),男,高级工程师,硕士生(通讯作者. E-mail: hanfeng@comac.cc).

  • 中图分类号: TB122;V228

Identification of Dynamic Forces on Aircraft Engine Mounts With the Least Squares Method

  • 摘要: 飞机舱内噪声与振动控制的一个关键技术是获取发动机安装节处的动态力,从而实现对发动机振动引发的机体结构振动和舱内噪声进行预测和控制.但对于飞机,在飞行状态下不可能对发动机安装节处的动态力进行直接测量.通过采用最小二乘法正则化逆运算,利用地面状态下发动机安装节至吊挂或发动机安装节至安装节上的结构频率响应函数,以及飞行状态下吊挂或发动机安装节上相同位置处的振动加速度响应,对发动机安装节上的动态力进行识别.通过对比逆运算过程中的矩阵条件数,判定两组动态力识别的相对准确度.通过对两组数据识别的动态力均方根值进行对比,确认通过最小二乘法识别的发动机安装节动态力满足工程使用要求.
  • [1] 杜建镔. 结构优化及其在振动和声学设计中的应用[M]. 北京: 清华大学出版社, 2015.(DU Jianbin. Structural Optimization and Its Application in Vibration and Acoustic Design [M]. Beijing: Tsinghua University Press, 2015.(in Chinese))
    [2] 张磊, 曹跃云, 杨自春, 等. 总体最小二乘正则化算法的载荷识别[J]. 振动与冲击, 2014,33(9): 159-164.(ZHANG Lei, CAO Yueyun, YANG Zichun, et al. Load identification using CG-TLS regularization algorithm[J]. Journal of Vibration and Shock,2014,33(9): 159-164.(in Chinese))
    [3] 姚学锋, 杨桂, 姚振汉, 等. 先进复合材料自行车架的动力学特性分析[C]//第六届全国结构工程学术会议论文集. 北京, 1997.(YAO Xuefeng, YANG Gui, YAO Zhenhan, et al. Dynamic characteristics of advanced composite bicycle frame[C]//The 6th National Academic Conference on Structural Engineering.Beijing, 1997.(in Chinese))
    [4] 陆秋海, 李连友, 向律楷, 等. 非平稳环境激励下结构工作模态参数识别法[J]. 清华大学学报(自然科学版), 2013,53(3): 389-393.(LU Qiuhai, LI Lianyou, XIANG Lükai, et al. Operational modal parameter identification of structures for non-stationary ambient excitation[J]. Journal of Tsinghua University (Science and Technology),2013,53(3): 389-393.(in Chinese))
    [5] XU X, OU J P. Force identification of dynamic systems using virtual work principle[J]. Journal of Sound and Vibration,2014,337: 71-94.
    [6] BARTLETT F D, FLANNELLY W G. Model verification of force determination for measuring vibratory loads[J]. Journal of the American Helicopter Society,1979,24(2): 10-18.
    [7] OKUBO N S, TATSUNO T. Identification of forces generated by a machine under operating condition[C]// Proceedings of International Modal Analysis Conference.Chicago, 1985.
    [8] LIU Y, JR SHEPARD S W. Dynamic force identification based on enhanced least squares and total least-squares schemes in the frequency domain[J]. Journal of Sound and Vibration,2005,282(1/2): 37-60.
    [9] 缑百勇, 陆秋海, 王波, 等. 利用固有频率异常值分析法检测螺栓拧紧力[J]. 振动与冲击, 2015,34(23): 77-82.(GOU Baiyong, LU Qiuhai, WANG Bo, et al. Bolt tightening force detection using outlier analysis of structural natural frequencies[J]. Journal of Vibration and Shock,2015,34(23): 77-82.(in Chinese))
    [10] 白会彦, 杜建镔. 某减速机构刚度分析及测试[J]. 计算机辅助工程, 2016,25(5): 7-11.(BAI Huiyan, DU Jianbin. Stiffness analysis and test on decelerating mechanism[J]. Computer Aided Engineering,2016,25(5): 7-11.(in Chinese))
    [11] GOLUB G H, VAN LOAN C F. Matrix Computation [M]. 4th ed. Baltimore: Johns Hopkins University Press, 2013.
    [12] KARLSSON S E S. Identification of external structure loads from measured harmonic responses[J]. Journal of Sound and Vibration,1996,196(1): 59-74.
    [13] LMS Egineering Innovation. Inverse force identification: tutorial[Z]. 2012.
  • 加载中
计量
  • 文章访问数:  1399
  • HTML全文浏览量:  253
  • PDF下载量:  252
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-19
  • 修回日期:  2020-07-02
  • 刊出日期:  2020-09-01

目录

    /

    返回文章
    返回