留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

升温和降温引起TATB基PBX炸药脱黏的数值分析

范正杰 刘占芳

范正杰, 刘占芳. 升温和降温引起TATB基PBX炸药脱黏的数值分析[J]. 应用数学和力学, 2020, 41(9): 956-973. doi: 10.21656/1000-0887.410062
引用本文: 范正杰, 刘占芳. 升温和降温引起TATB基PBX炸药脱黏的数值分析[J]. 应用数学和力学, 2020, 41(9): 956-973. doi: 10.21656/1000-0887.410062
FAN Zhengjie, LIU Zhanfang. Numerical Analysis on Debonding of Crystal-Binder Interface in TATB-Based Polymer-Bonded Explosive Caused by Heating and Cooling Processes[J]. Applied Mathematics and Mechanics, 2020, 41(9): 956-973. doi: 10.21656/1000-0887.410062
Citation: FAN Zhengjie, LIU Zhanfang. Numerical Analysis on Debonding of Crystal-Binder Interface in TATB-Based Polymer-Bonded Explosive Caused by Heating and Cooling Processes[J]. Applied Mathematics and Mechanics, 2020, 41(9): 956-973. doi: 10.21656/1000-0887.410062

升温和降温引起TATB基PBX炸药脱黏的数值分析

doi: 10.21656/1000-0887.410062
基金项目: 国家自然科学基金委员会与中国工程物理研究院联合基金(U1830115)
详细信息
    作者简介:

    范正杰(1993—),男,硕士生(E-mail: 547092985@qq.com);刘占芳(1963—),男,教授,博士生导师(通讯作者. E-mail: zhanfang@cqu.edu.cn).

  • 中图分类号: O34/TJ55

Numerical Analysis on Debonding of Crystal-Binder Interface in TATB-Based Polymer-Bonded Explosive Caused by Heating and Cooling Processes

Funds: The Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics(U1830115)
  • 摘要: 高聚物黏结炸药(polymer-bonded explosive, PBX)是含能颗粒与黏结剂组成的、具有微结构的非均质材料.热力环境下,PBX出现损伤是由晶粒与黏结剂及其界面的力学性能导致的.基于Voronoi理论与Monte Carlo的级配思想,建立了五种晶粒体积分数的PBX二维几何模型.考虑温度变化对晶粒和黏结剂热力学特性的影响,引入双线性本构模型描述晶粒-黏结剂界面的力学性质.数值研究了升温和降温过程PBX界面损伤机理.结果表明,升温时主要由较大的界面切向应力使得界面出现脱黏,降温时界面上的法向拉应力是界面脱黏的主要因素.相较升温阶段,降温过程更易产生界面脱黏,符合实验观察的结果.随着炸药晶粒体积分数的增加,降温后界面的残余刚度更大,表明提高PBX晶粒体积分数有助于降低界面脱黏.当晶粒体积分数越相近时,各晶粒粒径越趋于一致,则在界面上的损伤程度就越小.
  • [1] WU Y, HUANG F. A micromechanical model for predicting combined damage of particles and interface debonding in PBX explosives[J]. Mechanics of Materials,2009,41(1): 27-47.
    [2] WANG G, WANG Y, WEN Q. Thermal-mechanical analysis for confined HMX-based polymer-bonded explosives[J]. Journal of Thermal Stresses,2019,42(8): 1011-1034.
    [3] HU W, WU Y, HUANG F, et al. Numerical simulation analyses of β←→δ phase transition for a finite-sized HMX single crystal subjected to thermal loading[J]. RSC Advances,2018,8(44): 24873-24882.
    [4] KLEIN R. Voronoi Diagrams and Delaunay Triangulations [M]. New York: Springer, 1975.
    [5] VORONOI G. Nouvelles applications des paramètres continus à la théorie des formes quadratiques, deuxième mémoire: recherches sur les parallélloèdres primitifs[J]. Journal für die Reine und Angewandte Mathematik (Crelles Journal),1907,134: 97-178.
    [6] BARUA A, KIM S, HORIE Y, et al. Ignition criterion for heterogeneous energetic materials based on hotspot size-temperature threshold[J]. Journal of Applied Physics,2013,113(6): 64906.
    [7] AMBOS A, WILLOT F, JEULIN D, et al. Numerical modeling of the thermal expansion of an energetic material[J]. International Journal of Solids and Structures,2015,60/61(4): 125-139.
    [8] AMBOS A, TRUMEL H, WILLOT F, et al. A fast Fourier transform micromechanical upscaling method for the study of the thermal expansion of a TATB-based pressed explosive[C]//The 15th International Detonation Symposium . San Francisco, USA, 2014.
    [9] MCGRANE S D, ASLAM T D, PIERCE T H, et al. Temperature of shocked plastic bonded explosive PBX 9502 measured with spontaneous Stokes/anti-Stokes Raman[J]. Journal of Applied Physics,2018,123(4): 045902.
    [10] PI Z, LANG C, WU J. Temperature-dependent shock initiation of CL-20 based high explosives[J]. Central European Journal of Energetic Materials,2017,14(2): 361-374.
    [11] 林聪妹, 刘佳辉, 曾贵玉, 等. 苯乙烯共聚物改性TATB基PBX的抗热冲击性能[J]. 含能材料, 2016,24(2): 149-154.(LIN Congmei, LIU Jiahui, ZENG Guiyu, et al. Thermal shock resistance of styrene copolymer modified TATB-based polymer bonded explosive[J]. Chinese Journal of Energetic Materials,2016,24(2): 149-154.(in Chinese))
    [12] 韦兴文, 吴束力, 唐兴. HMX基PBX炸药热损伤的数值计算与实验研究[J]. 火炸药学报, 2014,37(4): 9-13.(WEI Xingwen, WU Shuli, TANG Xing. Numerical calculation and experimental study on thermal damage of HMX based polymer bonded explosive[J]. Chinese Journal of Explosives & Propellants,2014,37(4): 9-13.(in Chinese))
    [13] WILLEY T M, LAUDERBACH L, GAGLIARDI F, et al. Comprehensive characterization of voids and microstructure in TATB-based explosives from 10 nm to 1 cm: 〖JP2〗effects of temperature cycling and compressive creep[C]// The 14th International Detonation Symposium . Coeur d’Alene, USA, 2010.
    [14] 张伟斌, 田勇, 温茂萍, 等. JOB-9003炸药热冲击损伤的超声波检测[J]. 含能材料, 2004,12(2): 85-88.(ZHANG Weibin, TIAN Yong, WEN Maoping, et al. Experimental study on the thermal shock damage of explosive by ultrasonic testing[J]. Chinese Journal of Energetic Materials,2004,12(2): 85-88.(in Chinese))
    [15] 柏巍, 彭刚. 蒙特卡洛法生成混凝土随机骨料模型的ANSYS实现[J]. 石河子大学学报(自然科学版), 2007,25(4): 504-507.(BAI Wei, PENG Gang. ANSYS implementation of Monte Carlo method for generating random concrete aggregate model[J]. Journal of Shihezi University (Natural Science),2007,25(4): 504-507.(in Chinese))
    [16] BUECHLER M A, MILLER N A, LUSCHER D J, et al. Modeling the effects of texture on thermal expansion in pressed PBX 9502 components[C]//ASME 2016 International Mechanical Engineering Congress and Exposition . Phoenix, USA, 2016.
    [17] THOMPSON D G, BROWN G W, OLINGER B, et al. The effects of TATB ratchet growth on PBX 9502[J]. Propellants Explosives Pyrotechnics,2010,35(6): 507-513.
    [18] XU X, XIAO J, HUI H, et al. Molecular dynamic simulations on the structures and properties of ε-CL-20(0 0 1)/F2314PBX[J]. Journal of Hazardous Materials,2010,175(1): 423-428.
    [19] 温茂萍, 唐维, 董平, 等. 粘结剂含量对热压TATB基PBX残余应力的影响[J]. 含能材料, 2017,25(8): 661-666.(WEN Maoping, TANG Wei, DONG Ping, et al. Effect of binder content on residual stress of thermally compacted TATB based PBX[J]. Chinese Journal of Energetic Materials,2017,25(8): 661-666.(in Chinese))
    [20] SUN J, KANG B, ZHANG H, et al. Investigation on irreversible expansion of 1, 3, 5-triamino-2, 4, 6-trinitrobenzene cylinder[J]. Central European Journal of Energetic Materials,2011,8(1): 69-79.
    [21] 唐维, 李明, 张丘, 等. PBX部件机械加工过程中的夹持变形预测[J]. 含能材料, 2008,16(6): 703-707.(TANG Wei, LI Ming, ZHANG Qiu, et al. Prediction for clamping deformation of PBX parts on machining process[J]. Chinese Journal of Energetic Materials,2008,〖STHZ〗 16(6): 703-707.(in Chinese))
    [22] Dassault Systems. ABAQUS 6.14 documentation[DB/CD]. Providence, Rhode Island, USA, 2014.
    [23] 颜熹琳, 唐明峰, 甘海啸, 等. 拉剪复合试验测试炸药晶体/粘结剂界面力学特性[J]. 含能材料, 2016,24(6): 587-591.(YAN Xilin, TANG Mingfeng, GAN Haixiao, et al. Mechanical properties of explosive crystal/binder interface based on tension-shear test[J]. Chinese Journal of Energetic Materials,2016,24(6): 587-591.(in Chinese))
    [24] 黄西成, 李尚昆, 魏强, 等. 基于XFEM与Cohesive模型分析PBX裂纹产生与扩展[J]. 含能材料, 2017,25(8): 694-700.(HUANG Xicheng, LI Shangkun, WEI Qiang, et al. Analysis of crack initiation and growth in PBX energetic material using XFEM-based Cohesive method[J]. Chinese Journal of Energetic Materials,2017,25(8): 694-700.(in Chinese))
  • 加载中
计量
  • 文章访问数:  1150
  • HTML全文浏览量:  159
  • PDF下载量:  304
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-11
  • 修回日期:  2020-01-11
  • 刊出日期:  2020-09-01

目录

    /

    返回文章
    返回