留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类二阶双参数非线性时滞问题的奇摄动

朱红宝 陈松林

朱红宝, 陈松林. 一类二阶双参数非线性时滞问题的奇摄动[J]. 应用数学和力学, 2020, 41(11): 1292-1296. doi: 10.21656/1000-0887.410082
引用本文: 朱红宝, 陈松林. 一类二阶双参数非线性时滞问题的奇摄动[J]. 应用数学和力学, 2020, 41(11): 1292-1296. doi: 10.21656/1000-0887.410082
ZHU Hongbao, CHEN Songlin. A Class of 2nd-Order Singularly Perturbed Time Delay Nonlinear Problems With 2 Parameters[J]. Applied Mathematics and Mechanics, 2020, 41(11): 1292-1296. doi: 10.21656/1000-0887.410082
Citation: ZHU Hongbao, CHEN Songlin. A Class of 2nd-Order Singularly Perturbed Time Delay Nonlinear Problems With 2 Parameters[J]. Applied Mathematics and Mechanics, 2020, 41(11): 1292-1296. doi: 10.21656/1000-0887.410082

一类二阶双参数非线性时滞问题的奇摄动

doi: 10.21656/1000-0887.410082
基金项目: 安徽省高校自然科学研究重点项目(KJ2019A0062)
详细信息
    作者简介:

    朱红宝(1975—),男,讲师,硕士(通讯作者. E-mail: zhuhb@ahut.edu.cn).

  • 中图分类号: O175.14

A Class of 2nd-Order Singularly Perturbed Time Delay Nonlinear Problems With 2 Parameters

  • 摘要: 该文讨论了一类含有两个参数的非线性时滞问题,利用奇异摄动方法,研究了当两个参数满足一定关系时,所提问题的渐近解的性态.首先利用奇异摄动方法求出了问题的外部解;再利用伸展变量法构造了问题在边界附近的边界层校正项,得出了所提问题的形式渐近解;最后,在合适的假设条件下,利用微分不等式理论证明了解的一致有效性.
  • [1] JR O’MALLEY R E. Introduction to Singular Perturbation [M]. New York: Academic Press, 1974.
    [2] CHANG K W, HOWES F A. Nonlinear Singular Perturbation Phenomena: Theory and Application [M]. New York: Springer Verlag, 1984.
    [3] NAYFEH A H. Introduction for Perturbation Techniques [M]. New York: John Wiley & Sons, 1981.
    [4] DE JAGER E M, JIANG Furu. The Theory of Singular Perturbation [M]. Amsterdam: North-Holland Publishing Co, 1996.
    [5] BOH A. The shock location for a class of sensitive boundary value problems[J]. Journal of Mathematical Analysis and Applications,1999,235(1): 295-314.
    [6] 冯依虎, 陈怀军, 莫嘉琪. 一类非线性奇异摄动自治微分系统的渐近解[J]. 应用数学和力学, 2018,39(3): 355-363.(FENG Yihu, CHEN Huaijun, MO Jiaqi. Asymptotic solution to a class of nonlinear singular perturbation autonomous differential systems[J]. Applied Mathematics and Mechanics,2018,39(3): 355-363.(in Chinese))
    [7] 韩祥临, 石兰芳, 莫嘉琪. 双参数非线性非局部奇摄动问题的广义解[J]. 数学进展, 2016,45(1): 95-101.(HAN Xianglin, SHI Lanfang, MO Jiaqi. Generalized solution of nonlinear nonlocal singularly perturbed problems with two parameters[J]. Advances in Mathematics,2016,45(1): 95-101.(in Chinese))
    [8] MO J Q, WANG W G, CHEN X F, et al. The shock wave solutions for singularly perturbed time delay nonlinear boundary value problems with two parameters[J]. Mathematica Applicata,2014,27(3): 470-475.
    [9] WANG W G, SHI L F, HAN X L, et al. Singular perturbation problem for reaction diffusion time delay equation with boundary perturbation[J]. Chinese Journal of Engineering Mathematics,2015,32(2): 291-297.
    [10] 韩祥临, 汪维刚, 莫嘉琪. 一类非线性微分-积分时滞反应扩散系统奇摄动问题的广义解[J]. 数学物理学报, 2019,39A(2): 297-306.(HAN Xianglin, WANG Weigang, MO Jiaqi. Generalized solution to the singular perturbation problem for a class of nonlinear differential-integral time delay reaction diffusion system[J]. Acta Mathematica Scientia,2019,39A(2): 297-306.(in Chinese))
    [11] 朱红宝. 一类非线性奇摄动时滞边值问题的激波解[J]. 中国科学技术大学学报, 2018,48(5): 357-360.(ZHU Hongbao. The shock solutions for a class of singularly perturbed time delay nonlinear boundary value problems[J]. Journal of University of Science and Technology of China,2018,48(5): 357-360.(in Chinese))
    [12] 朱红宝. 一类分数阶非线性时滞问题的奇摄动[J]. 应用数学和力学, 2019,40(12): 1356-1363.(ZHU Hongbao. The shock solution to a class of singularly perturbed time delay nonlinear boundary value problem[J]. Applied Mathematics and Mechanics,2019,40(12): 1356-1363.(in Chinese))
  • 加载中
计量
  • 文章访问数:  1479
  • HTML全文浏览量:  346
  • PDF下载量:  263
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-17
  • 修回日期:  2020-04-17
  • 刊出日期:  2020-11-01

目录

    /

    返回文章
    返回