留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热环境中旋转功能梯度纳米环板的振动分析

刘旭 姚林泉

刘旭, 姚林泉. 热环境中旋转功能梯度纳米环板的振动分析[J]. 应用数学和力学, 2020, 41(11): 1224-1236. doi: 10.21656/1000-0887.410090
引用本文: 刘旭, 姚林泉. 热环境中旋转功能梯度纳米环板的振动分析[J]. 应用数学和力学, 2020, 41(11): 1224-1236. doi: 10.21656/1000-0887.410090
LIU Xu, YAO Linquan. Vibration Analysis of Rotating Functionally Gradient Nano Annular Plates in Thermal Environment[J]. Applied Mathematics and Mechanics, 2020, 41(11): 1224-1236. doi: 10.21656/1000-0887.410090
Citation: LIU Xu, YAO Linquan. Vibration Analysis of Rotating Functionally Gradient Nano Annular Plates in Thermal Environment[J]. Applied Mathematics and Mechanics, 2020, 41(11): 1224-1236. doi: 10.21656/1000-0887.410090

热环境中旋转功能梯度纳米环板的振动分析

doi: 10.21656/1000-0887.410090
基金项目: 国家自然科学基金(11572210)
详细信息
    作者简介:

    刘旭(1995—),男,硕士生(E-mail: xliu1@stu.suda.edu.cn);姚林泉(1961—),男,教授,博士,博士生导师(通讯作者. E-mail: lqyao@suda.edu.cn).

  • 中图分类号: O346

Vibration Analysis of Rotating Functionally Gradient Nano Annular Plates in Thermal Environment

Funds: The National Natural Science Foundation of China(11572210)
  • 摘要: 基于非局部弹性理论和Kirchhoff薄板理论,研究了旋转功能梯度纳米环板在热环境中的振动频率.首先,通过Hamilton原理,得到在温度变化和由旋转运动引起的面力作用下旋转功能梯度纳米环板的径向和横向耦合运动微分方程,并以此为依据得到了热环境下旋转功能梯度纳米环板的横向振动问题;接着,通过平面应力问题,得到在沿径向分布的离心惯性力和温度应力作用下环板的轴对称中面内力;然后,通过微分求积法对变系数微分方程进行离散并求解;最后,通过数值计算结果分析内外径比、功能梯度参数、旋转速度、非局部参数以及温度对环板无量纲固有频率的影响关系.
  • [1] 周平, 沈纪苹, 姚林泉, 等. 基于Levinson三阶剪切理论的功能梯度轴对称圆板特征值问题求解[J]. 力学季刊, 2017,38(2): 215-230.(ZHOU Ping, SHEN Jiping, YAO Linquan, et al. On the eigenvalue problems of functionally graded axisymmetric circular plate based on Levinson plate theory[J]. Chinese Quarterly of Mechanics,2017,38(2): 215-230.(in Chinese))
    [2] 李清禄, 王文涛, 杨静宁. 材料属性温度相关变厚度FGM圆板自由振动DQM求解[J]. 振动与冲击, 2018,37(10): 218-224.(LI Qinglu, WANG Wentao, YANG Jingning. Free vibration of FGM variable thickness circular plates with temperature-dependent material properties by the DQM method in thermal environment[J]. Journal of Vibration and Shock,2018,37(10): 218-224.(in Chinese))
    [3] MAHINZARE M, ALIPOUR M J, SAKKAK S A S, et al. A nonlocal strain gradient theory for dynamic modeling of a rotary thermo piezo electrically actuated nano FG circular plate[J]. Mechanical Systems and Signal Processing,2019,115: 323-337.
    [4] SHOJAEEFARD M H, GOOGARCHIN H S, GHADIRI M, et al. Micro temperature-dependent FG porous plate: free vibration and thermal buckling analysis using modified couple stress theory with CPT and FSDT[J]. Applied Mathematical Modelling,2017,50: 633-655.
    [5] 唐光泽, 姚林泉, 李成, 等. 基于非局部理论的黏弹性纳米杆轴向振动与波传播研究[J]. 应用数学和力学, 2019,40(1): 36-46.(TANG Guangze, YAO Linquan, LI Cheng, et al. Longitudinal vibration and wave propagation of viscoelastic nanorods based on the nonlocal theory[J]. Applied Mathematics and Mechanics,2019,40(1): 36-46.(in Chinese))
    [6] 徐晓建, 邓子辰. 非局部因子和表面效应对微纳米材料振动特性的影响[J]. 应用数学和力学, 2013,34(1): 14-21.(XU Xiaojian, DENG Zichen. Surface effects of adsorption-induced resonance analysis of micro/nanobeams via nonlocal elasticity[J]. Applied Mathematics and Mechanics,2013,34(1): 14-21.(in Chinese))
    [7] 王铁军, 马连生, 石朝锋. 功能梯度中厚圆/环板轴对称弯曲问题的解析解[J]. 力学学报, 2004,36(3): 348-353.(WANG Tiejun, MA Liansheng, SHI Chaofeng. Analytical solutions for axisymmetric bending of functionally graded circular/annular plates[J]. Acta Mechanica Sinica,2004,36(3): 348-353.(in Chinese))
    [8] 张莹, 梅靖, 陈鼎, 等. 功能梯度圆板和环板受周边力作用的弹性力学解[J]. 应用数学和力学, 2018,39(5): 538-547.(ZHANG Ying, MEI Jing, CHEN Ding, et al. Elasticity solutions for functionally graded circular and annular plates subjected to boundary forces and moments[J]. Applied Mathematics and Mechanics,2018,39(5): 538-547.(in Chinese))
    [9] 彭旭龙, 李显方. 任意梯度分布功能梯度圆环的热弹性分析[J]. 应用数学和力学, 2009,30(10): 5-12.(PENG Xulong, LI Xianfang. Thermoelastic analysis of a functionally graded annulus with an arbitrary gradient[J]. Applied Mathematics and Mechanics,2009,30(10): 5-12.(in Chinese))
    [10] EFRAIM E, EISENBERGER M. Exact vibration analysis of variable thickness thick annular isotropic and FGM plates[J]. Journal of Sound and Vibration,2007,299(4/5): 720-738.
    [11] HOSSEINI-HASHEMI S, AKHAVAN H, TAHER H R D, et al. Differential quadrature analysis of functionally graded circular and annular sector plates on elastic foundation[J]. Materials & Design,2010,31(4): 1871-1880.
    [12] 胡统号, 沈纪苹, 姚林泉. 弹性边界径向功能梯度压电环板面内振动[J]. 振动与冲击, 2018,37(8): 225-237.(HU Tonghao, SHEN Jiping, YAO Linquan. In-plane vibration of radial functional graded piezoelectric annular plates with elastic boundary[J]. Journal of Vibration and Shock,2018,37(8): 225-237.(in Chinese))
    [13] 吕朋, 杜敬涛, 邢雪, 等. 热环境下弹性边界约束FGM圆环板面内振动特性分析[J]. 振动工程学报, 2017,30(5): 713-723.(L Peng, DU Jingtao, XING Xue, et al. Study on in-plane vibration characteristics of elastically restrained FGM annular panel in thermal environment[J]. Journal of Vibration Engineering,2017,30(5): 713-723.(in Chinese))
    [14] WANG Q, SHI D, LIANG Q, et al. A unified solution for free in-plane vibration of orthotropic circular, annular and sector plates with general boundary conditions[J]. Applied Mathematical Modelling,2016,40(21/22): 9228-9253.
    [15] LYU P, DU J, LIU Z, et al. Free in-plane vibration analysis of elastically restrained annular panels made of functionally graded material[J]. Composite Structures,2017,178: 246-259.
    [16] SHI X J, SHI D Y, QIN Z R, et al. In-plane vibration analysis of annular plates with arbitrary boundary conditions[J]. The Scientific World Journal,2014,2014: 1-10.
    [17] BASHMAL S, BHAT R, RAKHEJA S. In-plane free vibration of circular annular disks[J]. Journal of Sound and Vibration,2009,322(1/2): 216-226.
    [18] ERINGEN A C, EDELEN D G B. On nonlocal elasticity[J]. International Journal of Engineering Science,1972,10(3): 233-248.
    [19] ERINGEN A C. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves[J]. Journal of Applied Physics,1983,54(9): 4703-4710.
    [20] 马连生, 赵永刚. 功能梯度材料圆(环)板的屈曲分析[J]. 甘肃工业大学学报, 2003,29(4): 140-143.(MA Liansheng, ZHAO Yonggang. Bucking analysis of annular functionally-graded plates[J]. Journal of Gansu University of Technology,2003,29(4): 140-143.(in Chinese))
    [21] BAUER H F, EIDEL W. Transverse vibration and stability of spinning circular plates of constant thickness and different boundary conditions[J]. Journal of Sound and Vibration,2007,300(3/5): 877-895.
    [22] BERT C W, MALIK M. Differential quadrature method in computational mechanics:a review[J]. Applied Mechanics Reviews,1996,49(1): 1-28.
    [23] 杨昌玉. 非局部理论下纳米结构动力行为的辛方法[D]. 博士学位论文. 大连: 大连理工大学, 2016.(YANG Changyu. The symplectic method on dynamic behaviors of nanostructures using the nonlocal theory[D]. PhD Thesis. Dalian: Dalian University of Technology, 2016.(in Chinese))
    [24] 王忠民, 王昭, 张荣, 等. 基于微分求积法分析旋转圆板的横向振动[J]. 振动与冲击, 2014,33(1): 125-129.(WANG Zhongmin, WANG Zhao, ZHANG Rong, et al. Transverse vibration analysis of spinning circular plate based on differential quadrature method[J]. Journal of Vibration and Shock,2014,33(1): 125-129.(in Chinese))
  • 加载中
计量
  • 文章访问数:  1322
  • HTML全文浏览量:  318
  • PDF下载量:  236
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-30
  • 修回日期:  2020-10-20
  • 刊出日期:  2020-11-01

目录

    /

    返回文章
    返回