[1] |
周平, 沈纪苹, 姚林泉, 等. 基于Levinson三阶剪切理论的功能梯度轴对称圆板特征值问题求解[J]. 力学季刊, 2017,38(2): 215-230.(ZHOU Ping, SHEN Jiping, YAO Linquan, et al. On the eigenvalue problems of functionally graded axisymmetric circular plate based on Levinson plate theory[J]. Chinese Quarterly of Mechanics,2017,38(2): 215-230.(in Chinese))
|
[2] |
李清禄, 王文涛, 杨静宁. 材料属性温度相关变厚度FGM圆板自由振动DQM求解[J]. 振动与冲击, 2018,37(10): 218-224.(LI Qinglu, WANG Wentao, YANG Jingning. Free vibration of FGM variable thickness circular plates with temperature-dependent material properties by the DQM method in thermal environment[J]. Journal of Vibration and Shock,2018,37(10): 218-224.(in Chinese))
|
[3] |
MAHINZARE M, ALIPOUR M J, SAKKAK S A S, et al. A nonlocal strain gradient theory for dynamic modeling of a rotary thermo piezo electrically actuated nano FG circular plate[J]. Mechanical Systems and Signal Processing,2019,115: 323-337.
|
[4] |
SHOJAEEFARD M H, GOOGARCHIN H S, GHADIRI M, et al. Micro temperature-dependent FG porous plate: free vibration and thermal buckling analysis using modified couple stress theory with CPT and FSDT[J]. Applied Mathematical Modelling,2017,50: 633-655.
|
[5] |
唐光泽, 姚林泉, 李成, 等. 基于非局部理论的黏弹性纳米杆轴向振动与波传播研究[J]. 应用数学和力学, 2019,40(1): 36-46.(TANG Guangze, YAO Linquan, LI Cheng, et al. Longitudinal vibration and wave propagation of viscoelastic nanorods based on the nonlocal theory[J]. Applied Mathematics and Mechanics,2019,40(1): 36-46.(in Chinese))
|
[6] |
徐晓建, 邓子辰. 非局部因子和表面效应对微纳米材料振动特性的影响[J]. 应用数学和力学, 2013,34(1): 14-21.(XU Xiaojian, DENG Zichen. Surface effects of adsorption-induced resonance analysis of micro/nanobeams via nonlocal elasticity[J]. Applied Mathematics and Mechanics,2013,34(1): 14-21.(in Chinese))
|
[7] |
王铁军, 马连生, 石朝锋. 功能梯度中厚圆/环板轴对称弯曲问题的解析解[J]. 力学学报, 2004,36(3): 348-353.(WANG Tiejun, MA Liansheng, SHI Chaofeng. Analytical solutions for axisymmetric bending of functionally graded circular/annular plates[J]. Acta Mechanica Sinica,2004,36(3): 348-353.(in Chinese))
|
[8] |
张莹, 梅靖, 陈鼎, 等. 功能梯度圆板和环板受周边力作用的弹性力学解[J]. 应用数学和力学, 2018,39(5): 538-547.(ZHANG Ying, MEI Jing, CHEN Ding, et al. Elasticity solutions for functionally graded circular and annular plates subjected to boundary forces and moments[J]. Applied Mathematics and Mechanics,2018,39(5): 538-547.(in Chinese))
|
[9] |
彭旭龙, 李显方. 任意梯度分布功能梯度圆环的热弹性分析[J]. 应用数学和力学, 2009,30(10): 5-12.(PENG Xulong, LI Xianfang. Thermoelastic analysis of a functionally graded annulus with an arbitrary gradient[J]. Applied Mathematics and Mechanics,2009,30(10): 5-12.(in Chinese))
|
[10] |
EFRAIM E, EISENBERGER M. Exact vibration analysis of variable thickness thick annular isotropic and FGM plates[J]. Journal of Sound and Vibration,2007,299(4/5): 720-738.
|
[11] |
HOSSEINI-HASHEMI S, AKHAVAN H, TAHER H R D, et al. Differential quadrature analysis of functionally graded circular and annular sector plates on elastic foundation[J]. Materials & Design,2010,31(4): 1871-1880.
|
[12] |
胡统号, 沈纪苹, 姚林泉. 弹性边界径向功能梯度压电环板面内振动[J]. 振动与冲击, 2018,37(8): 225-237.(HU Tonghao, SHEN Jiping, YAO Linquan. In-plane vibration of radial functional graded piezoelectric annular plates with elastic boundary[J]. Journal of Vibration and Shock,2018,37(8): 225-237.(in Chinese))
|
[13] |
吕朋, 杜敬涛, 邢雪, 等. 热环境下弹性边界约束FGM圆环板面内振动特性分析[J]. 振动工程学报, 2017,30(5): 713-723.(L Peng, DU Jingtao, XING Xue, et al. Study on in-plane vibration characteristics of elastically restrained FGM annular panel in thermal environment[J]. Journal of Vibration Engineering,2017,30(5): 713-723.(in Chinese))
|
[14] |
WANG Q, SHI D, LIANG Q, et al. A unified solution for free in-plane vibration of orthotropic circular, annular and sector plates with general boundary conditions[J]. Applied Mathematical Modelling,2016,40(21/22): 9228-9253.
|
[15] |
LYU P, DU J, LIU Z, et al. Free in-plane vibration analysis of elastically restrained annular panels made of functionally graded material[J]. Composite Structures,2017,178: 246-259.
|
[16] |
SHI X J, SHI D Y, QIN Z R, et al. In-plane vibration analysis of annular plates with arbitrary boundary conditions[J]. The Scientific World Journal,2014,2014: 1-10.
|
[17] |
BASHMAL S, BHAT R, RAKHEJA S. In-plane free vibration of circular annular disks[J]. Journal of Sound and Vibration,2009,322(1/2): 216-226.
|
[18] |
ERINGEN A C, EDELEN D G B. On nonlocal elasticity[J]. International Journal of Engineering Science,1972,10(3): 233-248.
|
[19] |
ERINGEN A C. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves[J]. Journal of Applied Physics,1983,54(9): 4703-4710.
|
[20] |
马连生, 赵永刚. 功能梯度材料圆(环)板的屈曲分析[J]. 甘肃工业大学学报, 2003,29(4): 140-143.(MA Liansheng, ZHAO Yonggang. Bucking analysis of annular functionally-graded plates[J]. Journal of Gansu University of Technology,2003,29(4): 140-143.(in Chinese))
|
[21] |
BAUER H F, EIDEL W. Transverse vibration and stability of spinning circular plates of constant thickness and different boundary conditions[J]. Journal of Sound and Vibration,2007,300(3/5): 877-895.
|
[22] |
BERT C W, MALIK M. Differential quadrature method in computational mechanics:a review[J]. Applied Mechanics Reviews,1996,49(1): 1-28.
|
[23] |
杨昌玉. 非局部理论下纳米结构动力行为的辛方法[D]. 博士学位论文. 大连: 大连理工大学, 2016.(YANG Changyu. The symplectic method on dynamic behaviors of nanostructures using the nonlocal theory[D]. PhD Thesis. Dalian: Dalian University of Technology, 2016.(in Chinese))
|
[24] |
王忠民, 王昭, 张荣, 等. 基于微分求积法分析旋转圆板的横向振动[J]. 振动与冲击, 2014,33(1): 125-129.(WANG Zhongmin, WANG Zhao, ZHANG Rong, et al. Transverse vibration analysis of spinning circular plate based on differential quadrature method[J]. Journal of Vibration and Shock,2014,33(1): 125-129.(in Chinese))
|