留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于非弹性收缩量的斜拉桥调索混合整数优化模型

王家林 王成彦 曹珂瑞

王家林, 王成彦, 曹珂瑞. 一种基于非弹性收缩量的斜拉桥调索混合整数优化模型[J]. 应用数学和力学, 2020, 41(12): 1336-1345. doi: 10.21656/1000-0887.410148
引用本文: 王家林, 王成彦, 曹珂瑞. 一种基于非弹性收缩量的斜拉桥调索混合整数优化模型[J]. 应用数学和力学, 2020, 41(12): 1336-1345. doi: 10.21656/1000-0887.410148
WANG Jialin, WANG Chengyan, CAO Kerui. A Mixed Integer Optimization Model Based on Inelastic Contraction for Cable Adjustment of Cable-Stayed Bridges[J]. Applied Mathematics and Mechanics, 2020, 41(12): 1336-1345. doi: 10.21656/1000-0887.410148
Citation: WANG Jialin, WANG Chengyan, CAO Kerui. A Mixed Integer Optimization Model Based on Inelastic Contraction for Cable Adjustment of Cable-Stayed Bridges[J]. Applied Mathematics and Mechanics, 2020, 41(12): 1336-1345. doi: 10.21656/1000-0887.410148

一种基于非弹性收缩量的斜拉桥调索混合整数优化模型

doi: 10.21656/1000-0887.410148
详细信息
    作者简介:

    王家林(1968—),男,教授,博士,硕士生导师(通讯作者. E-mail: 747085700@qq.com).

  • 中图分类号: O302|U448.27

A Mixed Integer Optimization Model Based on Inelastic Contraction for Cable Adjustment of Cable-Stayed Bridges

  • 摘要: 针对斜拉桥成桥索力调整问题,用杆单元模拟拉索,将非弹性收缩量引入拉索的自由度向量中,通过对整体结构平衡方程进行矩阵变换,建立了基于非弹性收缩量改变量的影响矩阵.利用得到的影响矩阵,在全桥调索情况下,理论上可精确达到目标索力.针对实际工程中部分调索的需求,引入0,1变量分别表示不调整、要调整某根拉索,与拉索的调索长度共同组成优化变量,建立了一个混合整数优化模型,可方便地实现部分调索优化分析.用算例演示了优化模型的有效性和可行性.
  • [1] 顾安邦, 向中富. 桥梁工程(下册)[M]. 北京: 人民交通出版社, 2011.(GU Anbang, XIANG Zhongfu. Bridge Engineering(Vol 2) [M]. Beijing: China Communications Press, 2011.(in Chinese))
    [2] GIMSING N J, GEORGAKIS C T. Cable Supported Bridges: Concept and Design [M]. 3rd ed. Hoboken, NJ: Wiley, 2012.
    [3] MARTINS A M B, SIMES L M C, NEGRO J H J O. Optimization of cable-stayed bridges: a literature survey[J]. Advances in Engineering Software,2020,149: 102829.
    [4] 陈德伟, 范立础. 确定预应力混凝土斜拉桥恒载初始索力的方法[J]. 同济大学学报(自然科学版), 1998,26(2): 120-124.(CHEN Dewei, FAN Lichu. Method to determine the initial cable force of prestressed concrete cable-stayed bridge under dead load[J]. Journal of Tongji University (Natural Science Edition),1998,26(2): 120-124.(in Chinese))
    [5] 戴杰, 秦凤江, 狄谨, 等. 斜拉桥成桥索力优化方法研究综述[J]. 中国公路学报, 2019,32(5): 17-37.(DAI Jie, QIN Fengjiang, DI Jin, et al. Review on cable force optimization method for cabled-stayed bride in completed bridge state[J]. China Journal of Highway and Transport,2019,32(5): 17-37.(in Chinese))
    [6] 田源, 杨海霞. 斜拉桥成桥索力优化理论及方法的最新进展[J]. 三峡大学学报(自然科学版), 2013,35(2): 47-53.(TIAN Yuan, YANG Haixia. The latest development of the theory and method of cable force optimization of cable-stayed bridge[J]. Journal of Three Gorges University(Natural Science Edition),2013,35(2): 47-53.(in Chinese))
    [7] CHEN D W. Determination of initial cable forces in prestressed concrete cable-stayed bridges for given design deck profiles using the force equilibrium method[J]. Computers & Structures,1999,74(1): 1-9.
    [8] YANG Jun. Determining the rational completion cable forces based on influence matrix method united minimum bending energy method[C]// Seventh International Conference on Traffic and Transportation Studies (ICTTS).Kunming, China, 2010.
    [9] 杨贤康. 钢桁梁斜拉桥索力调整实用算法与施工控制[D]. 硕士学位论文. 长沙: 中南大学, 2012.(YANG Xiankang. Practical algorithm and construction control for cable force adjustment of steel truss cable-stayed bridge[D]. Master Thesis. Changsha: Central South University, 2012.(in Chinese))
    [10] JANJIC D, PIRCHER M, PIRPHER H. Optimization of cable tensioning in cable-stayed bridges[J]. Journal of Bridge Engineering, 2003,8(3): 131-137.
    [11] 周银, 张雪松. 基于最小弯曲能的结合梁斜拉桥恒载索力优化计算方法[J]. 中外公路, 2018,38(4): 177-180.(ZHOU Yin, ZHANG Xuesong. Optimal calculation method of dead load cable force of combined beam cable-stayed bridge based on minimum bending energy[J]. Journal of China & Foreign Highway,2018,38(4): 177-180.(in Chinese))
    [12] 宁平华, 张靖, 陈加树. 广州鹤洞大桥斜拉桥合理索力设计[C]//第十二届中国土木工程学会桥梁及结构工程分会. 北京: 人民交通出版社, 1996.(NING Pinghua, ZHANG Jing, CHEN Jiashu. Reasonable cable force design of Guangzhou Hedong bridge[C]// Proceedings of the 12th Bridge and Structure Engineering Branch of China Civil Engineering Society.Beijing: China Communications Publishing, 1996.(in Chinese))
    [13] 陶海, 沈祥福. 斜拉桥索力优化的强次可行序列二次规划法[J]. 力学学报, 2006,38(3): 381-384.(TAO Hai, SHEN Xiangfu. Strongly subfeasible sequential quadratic programming method of cable tension optimization for cable-stayed bridge[J]. Chinese Journal of Theoretical and Applied Mechanics,2006,38(3): 381-384.(in Chinese))
    [14] 淡丹辉, 杨通. 基于影响矩阵及粒子群算法的斜拉桥自动调索[J]. 同济大学学报(自然科学版), 2013,41(3): 355-360.(DAN Danhui, YANG Tong. Automatic cable force adjustment for cable stayed bridge based on influence matrix and particle swarm optimization algorithm[J]. Journal of Tongji University(Natural Science),2013,41(3): 355-360.(in Chinese))
    [15] 孙全胜, 孟安鑫. 基于影响矩阵法的非对称独塔斜拉桥索力优化[J]. 中外公路, 2016,41(3): 85-88.(SUN Quansheng, MENG Anxin. Cable force optimization of asymmetric single tower cable-stayed bridge based on influence matrix method[J]. Journal of China & Foreign Highway,2016,41(3): 85-88.(in Chinese))
    [16] 苑仁安, 秦顺全, 肖海珠. 一种斜拉桥目标状态索力快速精准确定的方法[J]. 桥梁建设, 2020,50(2): 25-30.(YUAN Ren’an, QIN Shunquan, XIAO Haizhu. A method to rapidly and accurately determine target cable force for cable-stayed bridge[J]. Bridge Construction,2020,50(2): 25-30.(in Chinese))
    [17] MARTINS A M B, SIMES L M C, NEGRO J H J O. Optimization of cable forces for concrete cable-stayed bridges[C]// 14th International Conference on Civil, Structural and Environmental Engineering Computing.Stirling, UK, 2013.
    [18] MARTINS A M B, SIMES L M C, NEGRO J H J O. Cable stretching force optimization of concrete cable-stayed bridges including construction stages and time-dependent effects[J]. Structural and Multidisciplinary Optimization,2015,51(3): 757-772.
    [19] MARTINS A M B, SIMES L M C, NEGRO J H J O. Optimization of cable forces on concrete cable-stayed bridges including geometrical nonlinearities[J]. Computers & Structures,2015,155: 18-27.
    [20] GAO Q, YANG M G, QIAO J D. A multi-parameter optimization technique for prestressed concrete cable-stayed bridges considering prestress in girder[J]. Structural Engineering and Mechanics,2017,64(5): 567-577.
    [21] SONG C L, XIAO R C, SUN B. Optimization of cable pre-tension forces in long-span cable-stayed bridges considering the counterweight[J]. Engineering Structures,2018,172: 919-928.
    [22] GUO J, YUAN W, DANG X, et al. Cable force optimization of a curved cable-stayed bridge with combined simulated annealing method and cubic B-spline interpolation curves[J]. Engineering Structures,2019,201: 109813.
    [23] 王福敏, 张锋, 杜逢彬. 基于倒拆法对重庆朝天门长江大桥进行力学分析[J]. 公路交通技术, 2007(6): 43-47.(WANG Fumin, ZHANG Feng, DU Fengbin. Reverse disassembly based dynamic analysis on Chaotianmen Yangtze river bridge in Chongqing city[J]. Technology of Highway and Transport,2007(6): 43-47.(in Chinese))
    [24] 颜东煌, 刘光栋. 确定斜拉桥合理施工状态的正装迭代法[J]. 中国公路学报, 1999,12(2): 59-64.(YAN Donghuang, LIU Guangdong. Forward-iteration method for determining rational construction state of cable-stayed bridges[J]. China Journal of Highway and Transport,1999,12(2): 59-64.(in Chinese))
    [25] 杨德灿, 张先蓉, 金清平. 计入几何非线性影响的斜拉桥施工索力的确定[J]. 武汉理工大学学报(交通科学与工程版), 2005,29(6): 833-836.(YANG Decan, ZHANG Xianrong, JIN Qingping. Calculation of cable forces under construction for cable stayed bridges considering structural geometric non-linearity[J]. Journal of Wuhan University of Technology(Transportation Science & Engineering),2005,29(6): 833-836.(in Chinese))
    [26] 秦顺全. 分阶段成形结构过程控制的无应力状态控制法[J]. 中国工程科学, 2009,11(10): 72-78.(QING Shunquan. Unstressed state control method for process control of structure formed by stages[J]. Engineering Sciences,2009,11(10): 72-78.(in Chinese))
    [27] 康春霞, 杜仕朝, 邬晓光. 斜拉桥合理施工状态计算方法对比分析研究[J]. 铁道科学与工程学报, 2017,14(1): 87-93.(KANG Chunxia, DU Shizhao, WU Xiaoguang. Discussion and comparative analysis on calculation method of reasonable construction state of cable stayed bridge[J]. Journal of Railway Science and Engineering,2017,14(1): 87-93.(in Chinese))
    [28] 杨兴, 张敏, 周水兴. 影响矩阵法在斜拉桥二次调索中的应用[J]. 重庆交通大学学报(自然科学版), 2009,28(3): 508-511.(YANG Xing, ZHANG Min, ZHOU Shuixing. Application of influence matrix method in secondary cable adjustment of cable-stayed bridge[J]. Journal of Chongqing Jiaotong University (Natural Science Edition),2009,28(3): 508-511.(in Chinese))
    [29] 韩伟. 基于无应力状态法的铁路独塔混合梁斜拉桥索力调整研究[J]. 施工技术, 2019,48(23): 53-58.(HAN Wei. Study on determination of cable force based on unstressed state method for railway cable-stayed bridge with single tower and hybrid girder[J]. Construction Technology,2019,48(23): 53-58.(in Chinese))
    [30] 刘雄, 钟新谷, 熊先兰, 等. 基于无应力状态控制法的斜拉桥运营期调索计算方法研究[J]. 公路交通科技, 2015,32(9): 80-86.(LIU Xiong, ZHONG Xingu, XIONG Xianlan, et al. Study of cable adjustment calculation method of cable-stayed bridge during operation period based on control method of unstressed state[J]. Journal of Highway and Transportation Research and Development,2015,〖STHZ〗 32(9): 80-86.(in Chinese))
    [31] 王家林, 何琳. 一种含非弹性收缩量的预应力筋单元: CN201410116301.0.2014[P]. 2014-6-18.(WANG Jialin, HE Lin. A prestressing tendon element with inelastic shrinkage: CN201410116301.0.2014[P]. 2014-6-18.(in Chinese))
  • 加载中
计量
  • 文章访问数:  1429
  • HTML全文浏览量:  428
  • PDF下载量:  442
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-24
  • 修回日期:  2020-07-19
  • 刊出日期:  2020-12-01

目录

    /

    返回文章
    返回