留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

拓扑优化技术在抑制流体晃荡中的数值模拟研究

卫志军 申利敏 关晖 孙铭婧 吴锤结

卫志军, 申利敏, 关晖, 孙铭婧, 吴锤结. 拓扑优化技术在抑制流体晃荡中的数值模拟研究[J]. 应用数学和力学, 2021, 42(1): 49-57. doi: 10.21656/1000-0887.410206
引用本文: 卫志军, 申利敏, 关晖, 孙铭婧, 吴锤结. 拓扑优化技术在抑制流体晃荡中的数值模拟研究[J]. 应用数学和力学, 2021, 42(1): 49-57. doi: 10.21656/1000-0887.410206
WEI Zhijun, SHEN Limin, GUAN Hui, SUN Mingjing, WU Chuijie. Numerical Simulation of Topology Optimization Technique for Tank Sloshing Suppression[J]. Applied Mathematics and Mechanics, 2021, 42(1): 49-57. doi: 10.21656/1000-0887.410206
Citation: WEI Zhijun, SHEN Limin, GUAN Hui, SUN Mingjing, WU Chuijie. Numerical Simulation of Topology Optimization Technique for Tank Sloshing Suppression[J]. Applied Mathematics and Mechanics, 2021, 42(1): 49-57. doi: 10.21656/1000-0887.410206

拓扑优化技术在抑制流体晃荡中的数值模拟研究

doi: 10.21656/1000-0887.410206
基金项目: 国家自然科学基金(11602051);中国博士后科学基金(2016M591433);辽宁省自然科学基金(20170540151);〖JP〗中央高校基本科研业务费(DUT19RC(3)023)
详细信息
  • 中图分类号: O353.4

Numerical Simulation of Topology Optimization Technique for Tank Sloshing Suppression

Funds: The National Natural Science Foundation of China(11602051)
  • 摘要: 流体晃荡问题广泛存在于船舶与海洋工程领域,任何部分载液的储罐运载装备在运动过程中均存在晃荡问题.当外界激励频率接近液舱内流体自由液面的固有频率时,很容易产生剧烈的晃荡,产生极大的冲击力,进而引起结构损害.因此,研究有效的减晃方案,以抑制流体晃荡带来的冲击具有重要意义.该文研究了基于自主研制的数值程序模拟长方体液舱内的流体晃荡问题.该数值程序采用有限差分法求解均质不可压缩的三维非定常Navier-Stokes方程,利用VOF/PLIC方法对自由液面进行捕捉,并结合基于最优控制理论的拓扑优化程序对液舱内隔板进行优化设计.数值计算了液舱内固定形状的双隔板以及拓扑优化的双隔板的晃荡问题,分析了增设双隔板后流场的运动学和动力学特性.结果表明,拓扑优化后的双隔板抑制流体晃荡的效果更好,为船舶与海洋工程领域和航空航天领域中的晃荡问题提供了一种新的研究思路.
  • [1] 朱仁庆. 液体晃荡及其与结构的相互作用[D]. 博士学位论文. 无锡: 中国船舶科学研究中心, 2002.(ZHU Renqing. Time domain simulation of liquid sloshing and its interaction with flexible structure[D]. PhD Thesis. Wuxi: China Ship Scientific Research Center, 2002.(in Chinese))
    [2] 朱仁庆, 马海潇, 缪泉明, 等. LNG船液舱晃荡压强预报[J]. 船舶力学, 2013,17(1/2): 42-48.(ZHU Renqing, MA Haixiao, MIU Quanming, et al. Prediction of pressure induced by liquid sloshing for LNG carrier[J]. Journal of Ship Mechanics,2013,17(1/2): 42-48.(in Chinese))
    [3] 宁德志, 宋伟华, 滕斌. 纵摇容器中液体晃荡的非线性数值模拟[J]. 船舶力学, 2017,21(1): 15-22.(NING Dezhi, SONG Weihua, TENG Bin. Nonlinear numerical simulation of liquid sloshing in a container subjected to pitch excitation[J]. Journal of Ship Mechanics,2017,21(1): 15-22.(in Chinese))
    [4] 祁江涛, 顾民, 吴乘胜. 液舱晃荡的数值模拟[J]. 船舶力学, 2008,12(4): 574-581.(QI Jiangtao, GU Min, WU Chengsheng. Numerical simulation of sloshing in liquid tank[J]. Journal of Ship Mechanics,2008,12(4): 574-581.(in Chinese))
    [5] 卫志军, 张文首, 王安良, 等. 基于SPH方法的二维矩形舱液体晃荡数值研究[J]. 大连理工大学学报, 2014,54(6): 597-603.(WEI Zhijun, ZHANG Wenshou, WANG Anliang, et al. Numerical investigation of liquid sloshing in a 2D rectangular tank based on SPH method[J]. Journal of Dalian University of Technology,2014,54(6): 597-603.(in Chinese))
    [6] 于强, 王天舒. 航天器贮箱内液体大幅晃动动力学分析[J]. 中国科学: 物理学 力学 天文学, 2019,49(2): 127-134.(YU Qiang, WANG Tianshu. Dynamic analysis of large-scale amplitude liquid sloshing in the spacecraft[J]. Scientia Sinica: Physica, Mechanica & Astronomica,2019,49(2): 127-134.(in Chinese))
    [7] FALTINSEN O M, TIMOKHA A N. Sloshing [M]. Cambridge: Cambridge University Press, 2009.
    [8] 宁德志, 苏朋, 张崇伟, 等. 三维液舱内浮子式减晃荡结构的水动力特性[J]. 哈尔滨工程大学学报, 2019,〖STHZ〗 40(1): 154-161.(NING Dezhi, SU Peng, ZHANG Chongwei, et al. Hydrodynamic characteristics of an anti-sloshing floating body structure in a 3D tank[J]. Journal of Harbin Engineering University,2019,40(1): 154-161.(in Chinese))
    [9] 朱小松, 滕斌, 吕林, 等. 液舱内不同结构形式对晃荡的影响分析[J]. 水道港口, 2011,32(4): 297-304.(ZHU Xiaosong, TENG Bin, L Lin, et al. Analysis on the effect of sloshing in different liquid tank[J]. Journal of Waterway and Harbor,2011,32(4): 297-304.(in Chinese))
    [10] 黄志涛, 杨瑜, 邵家儒, 等. 罐车防晃结构SPH模拟研究[J]. 应用数学和力学, 2020,41(7): 760-770.(HUANG Zhitao, YANG Yu, SHAO Jiaru, et al. Numerical simulation of sloshing-mitigating structures in tank trucks with the SPH method[J]. Applied Mathematics and Mechanics,2020,41(7): 760-770.(in Chinese))
    [11] WANG W Y, ZANG Q S, WEI Z J, et al. An isogeometric boundary element method for liquid sloshing in the horizontal eccentric annular tanks with multiple porous baffles[J]. Ocean Engineering,2019,189: 106367.
    [12] 张友林, 陈翔, 万德成. 基于MPS-FEM耦合方法对比研究刚性与弹性挡板对液舱晃荡的抑制作用[J]. 应用数学和力学, 2016,37(12): 1359-1377.(ZHANG Youlin, CHEN Xiang, WAN Decheng. An MPS-FEM coupled method for the comparative study of liquid sloshing flows interacting with rigid and elastic baffles[J]. Applied Mathematics and Mechanics,2016,37(12): 1359-1377.(in Chinese))
    [13] XUE M A, LIN P. Numerical study of ring baffle effects on reducing violent liquid sloshing[J]. Computers & Fluids,2011,52: 116-129.
    [14] GUAN H, XUE Y F, WEI Z J, et al. Numerical simulations of sloshing and suppressing sloshing using the optimization technology method[J]. Applied Mathematics and Mechanics(English Edition),2018,39(6): 845-854.
    [15] HIRT C W, NICHOLS B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics,1981,39(1): 201-225.
    [16] KAUFMAN E H, LEEMING D J, TAYLOR G D. An ODE-based approach to nonlinearly constrained minimax problems[J]. Numerical Algorithms,1995,9(1): 25-37.
    [17] WEI Z J, FALTINSEN O M, LUGNI C, et al. Sloshing-induced slamming in screen-equipped rectangular tanks in shallow-water conditions[J]. Physics of Fluids,2015,27(3): 03210.
  • 加载中
计量
  • 文章访问数:  1025
  • HTML全文浏览量:  177
  • PDF下载量:  193
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-10
  • 修回日期:  2020-12-11
  • 刊出日期:  2021-01-01

目录

    /

    返回文章
    返回