留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超音速探测器-刚性盘-缝-带型降落伞系统的大涡模拟研究

龚升 吴锤结

龚升, 吴锤结. 超音速探测器-刚性盘-缝-带型降落伞系统的大涡模拟研究[J]. 应用数学和力学, 2021, 42(3): 233-247. doi: 10.21656/1000-0887.410274
引用本文: 龚升, 吴锤结. 超音速探测器-刚性盘-缝-带型降落伞系统的大涡模拟研究[J]. 应用数学和力学, 2021, 42(3): 233-247. doi: 10.21656/1000-0887.410274
GONG Sheng, WU Chuijie. Large-Eddy Simulation of Supersonic Capsule-Rigid Disk-Gap-Band Parachute Systems[J]. Applied Mathematics and Mechanics, 2021, 42(3): 233-247. doi: 10.21656/1000-0887.410274
Citation: GONG Sheng, WU Chuijie. Large-Eddy Simulation of Supersonic Capsule-Rigid Disk-Gap-Band Parachute Systems[J]. Applied Mathematics and Mechanics, 2021, 42(3): 233-247. doi: 10.21656/1000-0887.410274

超音速探测器-刚性盘-缝-带型降落伞系统的大涡模拟研究

doi: 10.21656/1000-0887.410274
基金项目: 国家自然科学基金(11372068);国家重点基础研究发展计划(973计划)(2014CB744104)
详细信息
    作者简介:

    龚升(1988—),男,博士生(E-mail: sgongsky@mail.dlut.edu.cn);吴锤结(1955—),男,教授(通讯作者. E-mail: cjwudut@dlut.edu.cn).

  • 中图分类号: O357.41

Large-Eddy Simulation of Supersonic Capsule-Rigid Disk-Gap-Band Parachute Systems

Funds: The National Natural Science Foundation of China(11372068)
  • 摘要: 研究了Mach数为2时,流场不同块结构自适应网格加密精度对探测器-刚性盘-缝-带型降落伞系统的气动减速性能以及流场结构特性的影响.对于非定常可压缩流体流动,采用了兼顾激波与湍流的WENO(weighted essentially non-oscillatory)和TCD(tuned center difference)混合计算格式以及拉伸涡亚格子模型的大涡模拟方法.结果表明:在较低的流场块结构自适应网格分辨率下,是难以准确模拟计算降落伞系统重要的气动阻力系数和捕捉流场流动特征细节的.随后验证了流场自适应网格的收敛性.
  • [1] O’FARRELL C, MUPPIDI S, BROCK J M. Development of models for disk-gap-band parachutes deployed supersonically in the wake of a slender body[C]//2017 IEEE Aerospace Conference.2017.
    [2] 王利荣. 降落伞理论与应用[M]. 北京: 宇航工业出版社, 1997.(WANG Lirong. Parachute Theory and Application [M]. Beijing: Aerospace Industry Press, 1997.(in Chinese))
    [3] BAYLE O, LORENZONI L, BLANCQUAERT T, et al. Exomars entry descent and landing demonstrator mission and design overview[C]// European Space Agency.2015.
    [4] SENGUPTA A, WITKOWSKI A, ROWAN J, et al. An overview of the Mars science laboratory parachute decelerator system[C]// 〖STBX〗19th Aerodynamic Decelerator Systems Technology Conference and Seminar. Williamsburg, VA: AIAA, 2007.
    [5] PETERSON C W, STRICKLAND J H. The fluid dynamic of parachute inflation[J]. Annual Reviews Fluid Mechanics,1961,28(1): 361-387.
    [6] 余莉, 李水生, 明晓. 降落伞弹性现象对伞衣载荷的影响[J]. 宇航学报, 2008,29(1): 381-385.(YU Li, LI Shuisheng, MING Xiao. Influence of the parachute elastic behavior on the canopy payload[J]. Journal of Astronautics,2008,29(1): 381-385.(in Chinese))
    [7] JIN Z Y, PASQUALINI S, QIN B. Experimental investigation of the effect of Reynolds number on flow structures in the wake of a circular parachute canopy[J]. Acta Mechanica Sinica,2014,30: 361-369.
    [8] JOHARI H, DESABRAIS K J. Vortex shedding in the near wake of a parachute canopy[J]. Journal of Fluid Mechanics,2005,〖STHZ〗 536: 185-207.
    [9] XUE X P, KOYAMA H, NAKAMURA Y. Numerical simulation on supersonic aerodynamic interference for rigid and flexible parachute[C]// AIAA Fluid Dynamics Conference and Exhibits.2013.
    [10] KARAGIOZIS K, KAMAKOTI R, CIRAK F, et al. A computational study of supersonic disk-gap-band parachutes using large-eddy simulation coupled to a structural membrane[J].Journal of Fluids and Structures,2011,〖STHZ〗 27(2): 175-192.
    [11] BARNHARDT M, DRAYNA T, NOMPELIS I, et al. Detached eddy simulations of the MSL parachute at supersonic conditions[C]// 〖STBX〗19th Aerodynamic Decelerator Systems Technology Conference and Seminar.Williamsburg, VA: AIAA, 2007.
    [12] BLAZEK J. Computational Fluid Dynamic Principles and Application [M]. USA: Elsevier, 2015.
    [13] 阎超. 计算流体动力学方法与应用[M]. 北京: 北京航空航天大学出版社, 2006.(YAN Chao. Computational Fluid Dynamics Methods and Application [M]. Beijing: Beihang University Press, 2006.(in Chinese))
    [14] 李涛, 随晶侠, 吴锤结. 超声速流场中6自由度物体运动的模拟研究[J]. 应用数学和力学, 2016,37(1): 33-53.(LI Tao, SUI Jingxia, WU Chuijie. Simulation of 6-DOF rigid bodies moving in supersonic flow[J]. Applied Mathematics and Mechanics,2016,37(1): 33-53.(in Chinese))
    [15] HILL D J, PANTANO C, PULLIN D I. Large-eddy simulation and multiscale modelling of a Richtmyer-Meshkov instability with reshock[J]. Journal of Fluid Mechanics,2006,〖STHZ〗 557: 29-61.
    [16] KOSOVIC B, PULLIN D I, SAMTANEY R. Subgrid-scale modelling for large-eddy simulations of compressible turbulence[J]. Physics of Fluids,2002,14(4): 1511-1522.
    [17] MISRA A, PULLIN D I. A vortex-based subgrid stress model for large-eddy simulation[J]. Physics of Fluids,1997,〖STHZ〗 9(8): 2443-2454.
    [18] LUNDGREN T S. Strained spiral vortex model for turbulence fine structure[J]. Physics of Fluids,1982,25(12): 2193-2203.
    [19] VOELKL T, PULLIN D I, CHAN D C. A physical-space version of the stretched-vortes subgrid-stress model for large-eddy simulation[J]. Physics of Fluids,2001,12(7): 1810-1825.
    [20] PULLIN D I. A vortex-based model for the subgrid flux of a passive scaler[J]. Physics of Fluids,2000,12(9): 2311-2319.
  • 加载中
计量
  • 文章访问数:  1606
  • HTML全文浏览量:  334
  • PDF下载量:  501
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-14
  • 修回日期:  2020-09-28
  • 刊出日期:  2021-03-01

目录

    /

    返回文章
    返回