留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

主动约束阻尼开口柱壳的NLMS反馈减振控制

黄志丹 向楠 苏程

黄志丹, 向楠, 苏程. 主动约束阻尼开口柱壳的NLMS反馈减振控制[J]. 应用数学和力学, 2021, 42(7): 686-695. doi: 10.21656/1000-0887.410312
引用本文: 黄志丹, 向楠, 苏程. 主动约束阻尼开口柱壳的NLMS反馈减振控制[J]. 应用数学和力学, 2021, 42(7): 686-695. doi: 10.21656/1000-0887.410312
HUANG Zhidan, XIANG Nan, SU Cheng. NLMS Feedback Vibration Control of Open Cylindrical Shells With Active Constrained Layer Damping[J]. Applied Mathematics and Mechanics, 2021, 42(7): 686-695. doi: 10.21656/1000-0887.410312
Citation: HUANG Zhidan, XIANG Nan, SU Cheng. NLMS Feedback Vibration Control of Open Cylindrical Shells With Active Constrained Layer Damping[J]. Applied Mathematics and Mechanics, 2021, 42(7): 686-695. doi: 10.21656/1000-0887.410312

主动约束阻尼开口柱壳的NLMS反馈减振控制

doi: 10.21656/1000-0887.410312
基金项目: 

国家自然科学基金(11672121)

详细信息
    作者简介:

    黄志丹(1977—),女,讲师(通讯作者. E-mail: huangzd@mail.lzjtu.cn).

    通讯作者:

    黄志丹(1977—),女,讲师(通讯作者. E-mail: huangzd@mail.lzjtu.cn).

  • 中图分类号: TB535|TH113

NLMS Feedback Vibration Control of Open Cylindrical Shells With Active Constrained Layer Damping

Funds: 

The National Natural Science Foundation of China(11672121)

  • 摘要: 为缩减开口柱壳结构的振动,给出了一种局部主动约束阻尼(ALCD)敷设结构,并结合Lagrange方程和Sanders薄壳理论构建了压电耦合开口柱壳的动力学模型,根据推得的系统状态空间形式,应用归一化最小均方差自适应滤波算法(NLMS)和线性二次规划算法(LQR)设计了一种自适应反馈控制器,通过数值仿真研究了控制参数对开口柱壳中点动态特性和控制电压的影响.结果表明:NLMS反馈控制方法能在不同控制电压频率、滤波阶数和自适应步长下保证对开口柱壳减振的有效性;增加自适应步长和滤波阶数能进一步提高减振控制的响应速率,但会导致控制电压超调量增加,而取较大的滤波阶数和较高频率控制电压可以减小噪声扰动,增加控制系统的可靠性.
  • [2]LI W, SHEN H J. A layerwise finite element formulation of laminated composite cylindrical shells with piezoelectric layers [J]. Journal of Mechanical Science and Technology,2018,32(2): 731-741.
    AREFI M, KARROUBI R, IRANI-RAHAGHI M. Free vibration analysis of functionally graded laminated sandwich cylindrical shells integrated with piezoelectric layer[J].Applied Mathematics and Mechanics (English Edition),2016,37(7): 821-834.
    [3]ROSTAMI R, MOHAMMADIMEHR M, RAHAGHI M I. Dynamic stability and nonlinear vibration of rotating sandwich cylindrical shell with considering FG core integrated with sensor and actuator[J].Steel and Composite Structures,2019,32(2): 225-237.
    [4]LIU J, YE W B, ZANG Q S, et al. Deformation of laminated and sandwich cylindrical shell with covered or embedded piezoelectric layers under compression and electrical loading[J].Composite Structures,2020,240: 112041. DOI: 10.1016/j.compstruct.2020.112041.
    [5]LOGHMANI A, DANESH M, KWAK M K, et al. Active control of radiated sound power of a smart cylindrical shell based on radiation modes[J].Applied Acoustics,2016,114: 218-229.
    [6]BIGLAR M, MIRDAMADI H R. Configuration optimization of piezoelectric patches attached to functionally graded shear-deformable cylindrical shells considering spillover effects[J].Journal of Intelligent Material Systems and Structures,2016,27(3): 295-313.
    [7]陆静, 袁丽芸. 敷设主动约束层阻尼圆锥壳的控制特性分析[J]. 振动与冲击, 2016,35(9): 141-146.(LU Jing, YUAN Liyun. Control characteristics of a conical shell covered with active constrained layer damping[J].Journal of Vibration and Shock,2016,35(9): 141-146.(in Chinese))
    [8]LOGHMANI A, DANESH M, KWAK M K, et al. Vibration suppression of a piezo-equipped cylindrical shell in a broad-band frequency domain[J].Journal of Sound and Vibration,2017,411: 260-277.
    [9]ROOHOLLAH T, HAMED D G, MOHAMADREZA Z, et al. A robust optimum controller for suppressing radiated sound from an intelligent cylinder based on sliding mode method considering piezoelectric uncertainties[J].Journal of Intelligent Material Systems and Structures,2019,30(20): 3066-3079.
    [10]安方, 张万良, 段勇, 等. 水下压电智能结构振动控制中传感器/作动器位置优化[J]. 船舶力学, 2019,23(4): 488-496.(AN Fang, ZHANG Wanliang, DUAN Yong, et al. Optimal placement of sensor and actuators for vibration control of underwater cylinder bonded with macro fiber composite[J].Journal of Ship Mechanics,2019,23(4): 488-496.
    [11]DONG Y H, LI Y H, LI X Y,et al. Active control of dynamic behaviors of graded graphene reinforced cylindrical shells with piezoelectric actuator/sensor layers[J].Applied Mathematical Modelling,2020,82: 252-270.
    [12]RADEK M, JAROSLAV R, RENE J, et al. Least mean squares and recursive least squares algorithms for total harmonic distortion reduction using shunt active power filter control[J].Energies,2019,12(8): 1-26.
    [13]朱晓锦, 方昱斌, 胡佳明, 等. 压电柔性梁振动变步长Fx-LMS控制算法分析与验证[J]. 振动、测试与诊断, 2020,40(2): 215-221.(ZHU Xiaojin, FANG Yubin, HU Jiaming, et al. Analysis and verification of Fx-LMS vibration control with variable step size for piezoelectric flexible beam[J].Journal of Vibration, Measurement & Diagnosis,2020,40(2): 215-221.(in Chinese))
    [14]LORENTE J, FERRER M, DE GONZALEZ A. The frequency partitioned block modified filtered-x NLMS with orthogonal correction factors for multichannel active noise control[J].Digital Signal Processing,2015,43: 47-58.
    [15]CAO X, SHI L, ZHANG X, et al. Active control of acoustic radiation from laminated cylindrical shells integrated with a piezoelectric layer[J].Smart Material Structures,2013,22(6): 065003. DOI: 10.1088/0964-1726/22/6/065003.
    [16]BODAGHI M, SHAKERI M. An analytical approach for free vibration and transient response of functionally graded piezoelectric cylindrical panels subjected to impulsive loads[J]. Composite Structures,2012,94(5): 1721-1735.
    [17]宋腾, 韩邦成, 郑世强,等. 基于最小位移的磁悬浮转子变极性LMS反馈不平衡补偿[J]. 振动与冲击, 2015,34(7): 24-32.(SONG Teng, HAN Bangcheng, ZHENG Shiqiang, et al. Variable polarity LMS feedback based on displacement nulling to compensate unbalance of magnetic bearing[J].Journal of Vibration and Shock,2015,34(7): 24-32.(in Chinese))
  • 加载中
计量
  • 文章访问数:  432
  • HTML全文浏览量:  93
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-15
  • 修回日期:  2020-11-24

目录

    /

    返回文章
    返回